切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2017, Vol. 07 ›› Issue (02) : 90 -93. doi: 10.3877/cma.j.issn.2095-123X.2017.02.010

所属专题: 文献

综述

骨髓间充质干细胞治疗阿尔茨海默病的研究进展
王回1, 石晶2, 卞合涛2, 闫中瑞2,()   
  1. 1. 272011 山东济宁,山东省医学科学院附属济宁市第一人民医院;250022 济南,济南大学山东省医学科学院医学与生命科学学院
    2. 272011 山东济宁,山东省医学科学院附属济宁市第一人民医院
  • 收稿日期:2016-10-26 出版日期:2017-04-01
  • 通信作者: 闫中瑞
  • 基金资助:
    山东省科学技术发展计划(2012GSF11838)

Research progress of bone marrow mesenchymal stem cell in the treatment of Alzheimer′s disease

Hui Wang1, Jing Shi2, Hetao Bian2, Zhongrui Yan2,()   

  1. 1. Department of Neurology , Jining NO.1 People′s Hospital, Jining 272011, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, China
    2. Department of Neurology , Jining NO.1 People′s Hospital, Jining 272011, China
  • Received:2016-10-26 Published:2017-04-01
  • Corresponding author: Zhongrui Yan
  • About author:
    Corresponding author: Yan Zhongrui, Email:
引用本文:

王回, 石晶, 卞合涛, 闫中瑞. 骨髓间充质干细胞治疗阿尔茨海默病的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2017, 07(02): 90-93.

Hui Wang, Jing Shi, Hetao Bian, Zhongrui Yan. Research progress of bone marrow mesenchymal stem cell in the treatment of Alzheimer′s disease[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2017, 07(02): 90-93.

骨髓间充质干细胞(BMSCs)是一类具有多项分化潜能的干细胞,通过诱导BMSCs可分化为神经细胞。已有动物实验证明,BMSCs移植治疗能够使阿尔茨海默病(AD)脑内Aβ沉积减少、tau蛋白过度磷酸化水平,并逆转AD病理变化,移植修饰BMSCs,其治疗效果更好。其可能的机制有:刺激神经发生和突触的形成,分泌多种神经营养因子和细胞因子,发挥免疫调节作用。本文就BMSCs治疗阿尔茨海默病研究进展做一综述。

Bone marrow mesenchymal stem cells (BMSCs) is a kind of stem cells that have multiple differentiation potential. Through induced BMSCs can differentiate into neural cells. Animal experiments proved that BMSCs transplantation for treatment of Alzheimer′s disease (AD) can reduce the β amyloid deposition, the level of tau protein phosphorylation, and reverse the AD pathological changes. Through the modification of BMSCs for treatment, the effect is better, and its possible mechanisms are stimulating neurogenesis and the formation of synapses, secreting various neurotrophic factors and cytokines for nerve protection, playing the role of immune regulation. This article reviews on the research progress of BMSCs in the treatment of Alzheimer′s disease.

[1]
Grimm MO, Hundsdorfer B, Grosgen S, et al. dependent app cleavage regulates glucosylceramide synthase and is affected in alzheimer′s disease[J]. Cell Physiol Biochem, 2014, 34(1): 92-110.
[2]
Peng D, Pan X, Cui J, et al. Hyperphosphorylation of tau protein in hippocampus of central insulin-resistant rats is associated with cognitive impairment[J]. Cell Physiol Biochem,2013, 32(5): 1417-1425.
[3]
Ballard C, Gauthier S, Corbett A, et al. Alzheimer′s disease[J]. Lancet, 2011,377(9770):1019-1031.
[4]
Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B,et al. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders[J]. An Acad Bras Cienc,2015,87(2 Suppl):1435-1449.
[5]
Rossignol J, Fink KD, Crane AT, et al. Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington′s disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number[J]. Stem Cell Res Ther, 2015,6:9.
[6]
Lochhead JJ, Thorne RG.Intranasal delivery of biologics to the central nervous system[J]. Adv Drug Deliv Rev, 2012,64(7):614-628.
[7]
Danielyan L, Beer-Hammer S, Stolzing A, et al. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer′s and Parkinson′s disease[J]. Cell Transplant, 2014,23 (Suppl 1):S123-S139.
[8]
Walczak P, Zhang J, Gilad AA,et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia[J]. Stroke, 2008 ,39(5):1569-1574.
[9]
Lee JS, Hong JM, Moon GJ, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke[J]. Stem Cells, 2010,28(6):1099-1106.
[10]
Li WY, Jin RL, Hu XY. Migration of PKH26-labeled mesenchymal stem cells in rats with Alzheimer′s disease[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2012,41(6):659-664.
[11]
Song MS, Learman CR, Ahn KC, et al. In vitro validation of effects of BDNF-expressing mesenchymal stem cells on neurodegeneration in primary cultured neurons of APP/PS1 mice[J]. Neuroscience, 2015,307:37-50.
[12]
Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains [J] . Proc Natl Acad Sci USA, 1999, 96 (19):10711-10716.
[13]
Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J]. Biochem Biophys Res Commun, 2001, 282(1) : 148-152.
[14]
Joe IS, Jeong SG, Cho GW. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells[J]. Neurosci Lett, 2015,584:97-102.
[15]
Joe IS, Cho GW.PDE4 Inhibition by Rolipram Promotes Neuronal Differentiation in Human Bone Marrow Mesenchymal Stem[J]. Cell Reprogram, 2016,18(4):224-229.
[16]
Yu J, Liu XL, Cheng QG, et al. G-CSF and hypoxic conditioning improve the proliferation, neural differentiation and migration of canine bone marrow mesenchymal stem cells[J]. Exp Ther Med, 2016,12(3):1822-1828.
[17]
Lee JK, Jin HK, Endo S,et al.Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer′s disease mice by modulation of immune responses[J]. Stem Cells, 2010,28(2):329-343.
[18]
Babaei P, Soltani Tehrani B, Alizadeh A.Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer′s disease[J]. Stem Cells Int, 2012,2012:369417.
[19]
Kim JY, Kim DH, Kim JH, et al.Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques[J]. Cell Death Differ,2012, 19(4): 680-691.
[20]
Bae JS, Jin HK, Lee JK, et al. Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer′s disease[J]. Curr Alzheimer Res, 2013,10(5):524-531.
[21]
Naaldijk Y, Jäger C, Fabian C, et al. Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice[J]. Neuropathol Appl Neurobiol, 2016,[Epub ahead of print].
[22]
Liu Z, Wang C, Wang X, et al.Therapeutic Effects of Transplantation of As-MiR-937-Expressing Mesenchymal Stem Cells in Murine Model of Alzheimer′s Disease [J]. Cell Physiol Biochem, 2015,37(1):321-330.
[23]
Zhang X, Zhang L, Cheng X, et al. Igf-1 promotes brn-4 expression and neuronal differentiation of neural stem cells via the pi3k/akt pathway[J]. PLoS One, 2014,9(12):e113801.
[24]
Malm TM, Koistinaho M, Pärepalo M,et al.Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice[J]. Neurobiol Dis, 2005,18(1):134-142.
[25]
Yang MS, Ji KA, Jeon SB, et al. Interleukin-13 enhances cyclooxygenase-2 expression in activated rat brain microglia: implications for death of activated microglia[J].J Immunol,2006,177(2): 1323-1329.
[26]
Mo SJ, Zhong Q, Zhou YF, et al. Bone marrow-derived mesenchymal stem cells prevent the apoptosis of neuron-like PC12 cells via erythropoietin expression[J]. Neurosci Lett, 2012,522(2):92-97.
[27]
Tang Y, Cui Y, Luo F, et al. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells[J]. Neural Regen Res, 2012,7(14):1101-1105.
[28]
Hokari M, Kuroda S, Shichinohe H, et al. Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms[J]. J Neurosci Res, 2008 ,86(5):1024-1035.
[29]
Wollen KA. Alzheimer′s disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners[J]. Altern Med Rev, 2010,15(3):223-244.
[30]
Zhang YZ, Lou JY, Bai HY, et al. Protective effect of bone marrow mesenchymal stem cells on PC12 cells apoptosis mediated by TAG1[J]. Int J Clin Exp Pathol, 2015,8(10):12093-12100.
[31]
Grimm MO, Mett J, Stahlmann CP, et al. APP intracellular domain derived from amyloidogenic beta-and gamma-secretase cleavage regulates neprilysin expression[J]. Front Aging Neurosci, 2015,7:77.
[32]
Nagase H, Nakayama K. The Intracellular Domain of Amyloid Precursor Protein is a Potential Therapeutic Target in Alzheimer′s Disease[J]. Curr Drug Discov Technol, 2014,11(4):243-258.
[33]
Chen TS, Lai RC, Lee MM,et a1.Mesenchymal stem cell secretes micropartieles enriched in pre-microRNAs[J]. Nucleic Acids Res,2010,38(1):215-224.
[34]
Lopez-Verrilli MA, Caviedes A, Cabrera A, et a1. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic out growth[J]. Neuroscience, 2016 ,320:129-139.
[35]
冯影,卢士红,王昕,等,人骨髓来源间充质干细胞分泌外泌体特性研究[J].中国实验血液学杂志,2014,22(3):595-599.
[36]
Nakano M, Nagaishi K, Konari N, et a1.Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J]. Sci Rep, 2016,6:24805.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 谢雨彤, 蒋良福, 池征璘, 李志杰, 高伟阳, 闫合德. 手指皮肤脱套伤修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 440-442.
[3] 陈进宏. 腹腔镜活体供肝获取规范与创新[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 324-324.
[4] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[5] 中华医学会器官移植学分会. 中国肺移植气道并发症临床诊疗指南(2024版)[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 266-274.
[6] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[7] 胡宁宁, 赵延荣, 王栋, 王胜亮, 郭源. FMNL3与肝细胞癌肝移植受者预后的相关性研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 283-288.
[8] 中华医学会器官移植学分会. 遗体捐献肾脏获取手术技术操作指南[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 257-265.
[9] 邹永康, 石雍, 徐贤刚, 张帅民, 刘衍, 杨生鹏, 叶啟发, 陈根, 张毅. 肾移植术后手术切口米根霉感染伴菌血症一例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 289-292.
[10] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[11] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[14] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[15] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?