切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2017, Vol. 07 ›› Issue (02) : 90 -93. doi: 10.3877/cma.j.issn.2095-123X.2017.02.010

所属专题: 文献

综述

骨髓间充质干细胞治疗阿尔茨海默病的研究进展
王回1, 石晶2, 卞合涛2, 闫中瑞2,()   
  1. 1. 272011 山东济宁,山东省医学科学院附属济宁市第一人民医院;250022 济南,济南大学山东省医学科学院医学与生命科学学院
    2. 272011 山东济宁,山东省医学科学院附属济宁市第一人民医院
  • 收稿日期:2016-10-26 出版日期:2017-04-01
  • 通信作者: 闫中瑞
  • 基金资助:
    山东省科学技术发展计划(2012GSF11838)

Research progress of bone marrow mesenchymal stem cell in the treatment of Alzheimer′s disease

Hui Wang1, Jing Shi2, Hetao Bian2, Zhongrui Yan2,()   

  1. 1. Department of Neurology , Jining NO.1 People′s Hospital, Jining 272011, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, China
    2. Department of Neurology , Jining NO.1 People′s Hospital, Jining 272011, China
  • Received:2016-10-26 Published:2017-04-01
  • Corresponding author: Zhongrui Yan
  • About author:
    Corresponding author: Yan Zhongrui, Email:
引用本文:

王回, 石晶, 卞合涛, 闫中瑞. 骨髓间充质干细胞治疗阿尔茨海默病的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2017, 07(02): 90-93.

Hui Wang, Jing Shi, Hetao Bian, Zhongrui Yan. Research progress of bone marrow mesenchymal stem cell in the treatment of Alzheimer′s disease[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2017, 07(02): 90-93.

骨髓间充质干细胞(BMSCs)是一类具有多项分化潜能的干细胞,通过诱导BMSCs可分化为神经细胞。已有动物实验证明,BMSCs移植治疗能够使阿尔茨海默病(AD)脑内Aβ沉积减少、tau蛋白过度磷酸化水平,并逆转AD病理变化,移植修饰BMSCs,其治疗效果更好。其可能的机制有:刺激神经发生和突触的形成,分泌多种神经营养因子和细胞因子,发挥免疫调节作用。本文就BMSCs治疗阿尔茨海默病研究进展做一综述。

Bone marrow mesenchymal stem cells (BMSCs) is a kind of stem cells that have multiple differentiation potential. Through induced BMSCs can differentiate into neural cells. Animal experiments proved that BMSCs transplantation for treatment of Alzheimer′s disease (AD) can reduce the β amyloid deposition, the level of tau protein phosphorylation, and reverse the AD pathological changes. Through the modification of BMSCs for treatment, the effect is better, and its possible mechanisms are stimulating neurogenesis and the formation of synapses, secreting various neurotrophic factors and cytokines for nerve protection, playing the role of immune regulation. This article reviews on the research progress of BMSCs in the treatment of Alzheimer′s disease.

[1]
Grimm MO, Hundsdorfer B, Grosgen S, et al. dependent app cleavage regulates glucosylceramide synthase and is affected in alzheimer′s disease[J]. Cell Physiol Biochem, 2014, 34(1): 92-110.
[2]
Peng D, Pan X, Cui J, et al. Hyperphosphorylation of tau protein in hippocampus of central insulin-resistant rats is associated with cognitive impairment[J]. Cell Physiol Biochem,2013, 32(5): 1417-1425.
[3]
Ballard C, Gauthier S, Corbett A, et al. Alzheimer′s disease[J]. Lancet, 2011,377(9770):1019-1031.
[4]
Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B,et al. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders[J]. An Acad Bras Cienc,2015,87(2 Suppl):1435-1449.
[5]
Rossignol J, Fink KD, Crane AT, et al. Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington′s disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number[J]. Stem Cell Res Ther, 2015,6:9.
[6]
Lochhead JJ, Thorne RG.Intranasal delivery of biologics to the central nervous system[J]. Adv Drug Deliv Rev, 2012,64(7):614-628.
[7]
Danielyan L, Beer-Hammer S, Stolzing A, et al. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer′s and Parkinson′s disease[J]. Cell Transplant, 2014,23 (Suppl 1):S123-S139.
[8]
Walczak P, Zhang J, Gilad AA,et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia[J]. Stroke, 2008 ,39(5):1569-1574.
[9]
Lee JS, Hong JM, Moon GJ, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke[J]. Stem Cells, 2010,28(6):1099-1106.
[10]
Li WY, Jin RL, Hu XY. Migration of PKH26-labeled mesenchymal stem cells in rats with Alzheimer′s disease[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2012,41(6):659-664.
[11]
Song MS, Learman CR, Ahn KC, et al. In vitro validation of effects of BDNF-expressing mesenchymal stem cells on neurodegeneration in primary cultured neurons of APP/PS1 mice[J]. Neuroscience, 2015,307:37-50.
[12]
Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains [J] . Proc Natl Acad Sci USA, 1999, 96 (19):10711-10716.
[13]
Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J]. Biochem Biophys Res Commun, 2001, 282(1) : 148-152.
[14]
Joe IS, Jeong SG, Cho GW. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells[J]. Neurosci Lett, 2015,584:97-102.
[15]
Joe IS, Cho GW.PDE4 Inhibition by Rolipram Promotes Neuronal Differentiation in Human Bone Marrow Mesenchymal Stem[J]. Cell Reprogram, 2016,18(4):224-229.
[16]
Yu J, Liu XL, Cheng QG, et al. G-CSF and hypoxic conditioning improve the proliferation, neural differentiation and migration of canine bone marrow mesenchymal stem cells[J]. Exp Ther Med, 2016,12(3):1822-1828.
[17]
Lee JK, Jin HK, Endo S,et al.Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer′s disease mice by modulation of immune responses[J]. Stem Cells, 2010,28(2):329-343.
[18]
Babaei P, Soltani Tehrani B, Alizadeh A.Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer′s disease[J]. Stem Cells Int, 2012,2012:369417.
[19]
Kim JY, Kim DH, Kim JH, et al.Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques[J]. Cell Death Differ,2012, 19(4): 680-691.
[20]
Bae JS, Jin HK, Lee JK, et al. Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer′s disease[J]. Curr Alzheimer Res, 2013,10(5):524-531.
[21]
Naaldijk Y, Jäger C, Fabian C, et al. Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice[J]. Neuropathol Appl Neurobiol, 2016,[Epub ahead of print].
[22]
Liu Z, Wang C, Wang X, et al.Therapeutic Effects of Transplantation of As-MiR-937-Expressing Mesenchymal Stem Cells in Murine Model of Alzheimer′s Disease [J]. Cell Physiol Biochem, 2015,37(1):321-330.
[23]
Zhang X, Zhang L, Cheng X, et al. Igf-1 promotes brn-4 expression and neuronal differentiation of neural stem cells via the pi3k/akt pathway[J]. PLoS One, 2014,9(12):e113801.
[24]
Malm TM, Koistinaho M, Pärepalo M,et al.Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice[J]. Neurobiol Dis, 2005,18(1):134-142.
[25]
Yang MS, Ji KA, Jeon SB, et al. Interleukin-13 enhances cyclooxygenase-2 expression in activated rat brain microglia: implications for death of activated microglia[J].J Immunol,2006,177(2): 1323-1329.
[26]
Mo SJ, Zhong Q, Zhou YF, et al. Bone marrow-derived mesenchymal stem cells prevent the apoptosis of neuron-like PC12 cells via erythropoietin expression[J]. Neurosci Lett, 2012,522(2):92-97.
[27]
Tang Y, Cui Y, Luo F, et al. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells[J]. Neural Regen Res, 2012,7(14):1101-1105.
[28]
Hokari M, Kuroda S, Shichinohe H, et al. Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms[J]. J Neurosci Res, 2008 ,86(5):1024-1035.
[29]
Wollen KA. Alzheimer′s disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners[J]. Altern Med Rev, 2010,15(3):223-244.
[30]
Zhang YZ, Lou JY, Bai HY, et al. Protective effect of bone marrow mesenchymal stem cells on PC12 cells apoptosis mediated by TAG1[J]. Int J Clin Exp Pathol, 2015,8(10):12093-12100.
[31]
Grimm MO, Mett J, Stahlmann CP, et al. APP intracellular domain derived from amyloidogenic beta-and gamma-secretase cleavage regulates neprilysin expression[J]. Front Aging Neurosci, 2015,7:77.
[32]
Nagase H, Nakayama K. The Intracellular Domain of Amyloid Precursor Protein is a Potential Therapeutic Target in Alzheimer′s Disease[J]. Curr Drug Discov Technol, 2014,11(4):243-258.
[33]
Chen TS, Lai RC, Lee MM,et a1.Mesenchymal stem cell secretes micropartieles enriched in pre-microRNAs[J]. Nucleic Acids Res,2010,38(1):215-224.
[34]
Lopez-Verrilli MA, Caviedes A, Cabrera A, et a1. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic out growth[J]. Neuroscience, 2016 ,320:129-139.
[35]
冯影,卢士红,王昕,等,人骨髓来源间充质干细胞分泌外泌体特性研究[J].中国实验血液学杂志,2014,22(3):595-599.
[36]
Nakano M, Nagaishi K, Konari N, et a1.Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J]. Sci Rep, 2016,6:24805.
[1] 谢迎东, 孙帼, 徐超丽, 杨斌, 孙晖, 戴云. 超声造影定量评价不同生存期移植肾血流灌注的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 749-754.
[2] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[3] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[4] 刘林峰, 王增涛, 王云鹏, 钟硕, 郝丽文, 仇申强, 陈超. 足底内侧皮瓣联合甲骨皮瓣在手指V度缺损再造中的临床应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 480-484.
[5] 陈永沛, 仲海燕, 陈勇, 王慜, 王倩, 邹鸣立, 袁斯明. 数字减影血管造影在腓动脉穿支皮瓣移植中的应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 507-510.
[6] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[7] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[8] 彭文翰. 肾移植受者早期霉酚酸强化剂量长期有效性和安全性的研究[J]. 中华移植杂志(电子版), 2023, 17(05): 0-.
[9] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[10] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[11] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要