切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 48 -51. doi: 10.3877/cma.j.issn.2095-123X.2019.01.011

所属专题: 文献

综述

维生素D的多重神经活性及其潜在的抗抑郁机制研究进展
陈丹1, 郭玉金1, 耿春梅1, 江沛1,()   
  1. 1. 272000 济宁市第一人民医院临床药学科
  • 收稿日期:2018-12-17 出版日期:2019-02-15
  • 通信作者: 江沛
  • 基金资助:
    国家自然科学基金(81602846); 山东省自然科学基金(ZR2016HQ21)

Advances in research on multiple neuroactivities of vitamin D and treatment of depression

Dan Chen1, Yujin Guo1, Chunmei Geng1, Pei Jiang1,()   

  1. 1. Department of Clinical Pharmacy, First People’s Hospital of Jining, Jining 272000, China
  • Received:2018-12-17 Published:2019-02-15
  • Corresponding author: Pei Jiang
  • About author:
    Corresponding author: Jiang Pei, Email:
引用本文:

陈丹, 郭玉金, 耿春梅, 江沛. 维生素D的多重神经活性及其潜在的抗抑郁机制研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(01): 48-51.

Dan Chen, Yujin Guo, Chunmei Geng, Pei Jiang. Advances in research on multiple neuroactivities of vitamin D and treatment of depression[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(01): 48-51.

抑郁症在世界范围内普遍存在,并导致死亡率的增加以及生活质量的下降。越来越多的证据表明抑郁症可能与维生素D缺乏有关。维生素D作为一种更简单和更易接受的治疗方式,其可能通过维生素D受体调节神经活动,维持神经细胞Ca2+平衡,减少炎症因子的表达,维持线粒体正常功能,并参与5-羟色胺的合成和活性氧稳态的调节,来实现预防和减轻抑郁的作用。本文就维生素D在改善抑郁中的可能作用机制及其缺乏与抑郁的关系进行综述。

Depression is widespread worldwide, leading to increased mortality and a decline in quality of life. There is growing evidence that depression may be associated with vitamin D deficiency. As a simpler and more acceptable pharmacological intervention, vitamin D may regulate nerve activity through vitamin D receptor, maintain the Ca2+ balance of nerve cells, reduce the expression of inflammatory factors, and maintain the normal function of mitochondria. It also participates in the synthesis of serotonin and the regulation of reactive oxygen homeostasis to prevent and alleviate depression. This article reviews the possible mechanism of vitamin D in improving depression and the relationship between vitamin D deficiency and depression.

[1]
Kessler RC. The costs of depression[J]. Psychiatr Clin North Am, 2012, 35(1): 1-14.
[2]
Druss BG, Hwang I, Petukhova M, et al. Impairment in role functioning in mental and chronic medical disorders in the United States: results from the National Comorbidity Survey Replication[J]. Mol Psychiatry, 2009, 14(7): 728-737.
[3]
WHO Guidelines Approved by the Guidelines Review Committee. mhGAP: mental health gap action programme: scaling up care for mental, neurological and substance use disorders[M]. Geneva: World Health Organization, 2008.
[4]
Soczynska JK, Mansur RB, Brietzke E, et al. Novel therapeutic targets in depression: Minocycline as a candidate treatment[J]. Behav Brain Res, 2012, 235(2): 302-317.
[5]
Narang P, Retzlaff A, Brar K, et al. Deep brain stimulation for treatment-refractory depression[J]. South Med J, 2016, 109(11): 700-703.
[6]
Anderson HD, Pace WD, Libby AM, et al. Rates of 5 common antidepressant side effects among new adult and adolescent cases of depression: a retrospective US claims study[J]. Clin Ther, 2012, 34(1): 113-123.
[7]
Eyles DW, Burne TH, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease[J]. Front Neuroendocrinol, 2013, 34(1): 47-64.
[8]
Holick MF. Vitamin D deficiency[J]. N Engl J Med, 2007, 375(3): 266-281.
[9]
Holick MF, Maclaughlin JA, Clark MB, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences[J]. Science, 1980, 210(4466): 203-205.
[10]
Kongsbak M, Levring TB, Geisler C, et al. The vitamin D receptor and T cell function[J]. Front Immunol, 2013, 4: 148.
[11]
Hendrix I, Anderson P, May B, et al. Regulation of gene expression by the CYP27B1 promoter-study of a transgenic mouse model[J]. J Steroid Biochem Mol Biol, 2004, 89-90(1-5): 139-142.
[12]
Puchacz E, Stumpf WE, Stachowiak EK, et al. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells[J]. Brain Res Mol Brain Res, 1996, 36(1): 193-196.
[13]
Newell KA, Matosin N. Rethinking metabotropic glutamate receptor 5 pathological findings in psychiatric disorders: implications for the future of novel therapeutics[J]. BMC Psychiatry, 2014, 14: 23.
[14]
Berridge MJ. Vitamin D and depression: cellular and regulatory mechanisms[J]. Pharmacol Rev, 2017, 69(2): 80-92.
[15]
Wohleb ES, Gerhard D, Thomas A, et al. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine[J]. Curr Neuropharmacol, 2017, 15(1): 11-20.
[16]
Wyskiel DR, Andrade R. Serotonin excites hippocampal CA1 GABAergic interneurons at the stratum radiatum-stratum lacunosum moleculare border[J]. Hippocampus, 2016, 26(9): 1107-1114.
[17]
Schlecker C, Boehmerle W, Jeromin A, et al. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium[J]. J Clin Invest, 2006, 116(6): 1668-1674.
[18]
Soeiro-de-Souza MG, Salvadore G, Moreno RA, et al. Bcl-2 rs956572 polymorphism is associated with increased anterior cingulate cortical glutamate in euthymic bipolar I disorder[J]. Neuropsychopharmacology, 2013, 38(3): 468-475.
[19]
Friedman AK, Juarez B, Ku SM, et al. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism[J]. Nat Commun, 2016, 7: 11671.
[20]
Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption[J]. J Nutr, 2004, 134(11): 3137-3139.
[21]
Brewer LD, Thibault V, Chen KC, et al. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons[J]. J Neurosci, 2001, 21(1): 98-108.
[22]
Gezen-Ak D, Dursun E, Yilmazer S. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons[J]. PLoS One, 2011, 6(3): e17553.
[23]
Zhang C, Wu Z, Zhao G, et al. Identification of IL6 as a susceptibility gene for major depressive disorder[J]. Sci Rep, 2016, 6: 31264.
[24]
Xia L, Zhang D, Wang C, et al. PC-PLC is involved in osteoclastogenesis induced by TNF-α through upregulating IP3R1 expression[J]. FEBS Lett, 2012, 586(19): 3341-3348.
[25]
Dean B, Gibbons AS, Tawadros N, et al. Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders[J]. Mol Psychiatry, 2013, 18(7): 767-773.
[26]
Wei R, Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D[J]. Nutrients, 2015, 7(10): 8251-8260.
[27]
Barbosa IG, Machado-Vieira R, Soares JC, et al. The immunology of bipolar disorder[J]. Neuroimmunomodulation, 2014, 21(2-3): 117-122.
[28]
Bánsághi S, Golenár T, Madesh M, et al. Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species[J]. J Biol Chem, 2014, 289(12): 8170-8181.
[29]
Lock JT, Sinkins WG, Schilling WP. Effect of protein S-glutathionylation on Ca2+ homeostasis in cultured aortic endothelial cells[J]. Am J Physiol Heart Circ Physiol, 2011, 300(2): H493-506.
[30]
Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from?[J]. BMC Med, 2013, 11: 200.
[31]
Consiglio M, Viano M, Casarin S, et al. Mitochondrial and lipogenic effects of vitamin D on differentiating and proliferating human keratinocytes[J]. Exp Dermatol, 2015, 24(10): 748-753.
[32]
Silvagno F, De Vivo E, Attanasio A, et al. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes[J]. PLoS One, 2010, 5(1): e8670.
[33]
Ryan ZC, Craig TA, Folmes CD, et al. 1α,25-dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells[J]. J Biol Chem, 2016, 291(3): 1514-1528.
[34]
Catena-Dell’Osso M, Bellantuono C, Consoli G, et al. Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development?[J]. Curr Med Chem, 2011, 18(2): 245-255.
[35]
Thompson SM, Kallarackal AJ, Kvarta MD, et al. An excitatory synapse hypothesis of depression[J]. Trends Neurosci, 2015, 38(5): 279-294.
[36]
Chabas JF, Alluin O, Rao G, et al. Vitamin D2 potentiates axon regeneration[J]. J Neurotrauma, 2008, 25(10): 1247-1256.
[37]
Grecksch G, Rüthrich H, Höllt V, et al. Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats[J]. Psychoneuroendocrinology, 2009, 34(Suppl 1): S258-264.
[38]
Gezenak D, Dursun E, Yilmazer S. The effect of vitamin D treatment on nerve growth factor (NGF) release from hippocampal neurons[J]. Noro Psikiyatri Arsivi, 2014, 51(2): 157-162.
[39]
Björkhem-Bergman L, Bergman P. Vitamin D and patients with palliative cancer[J]. BMJ Support Palliat Care, 2016, 6(3): 287-291.
[40]
Jääskeläinen T, Knekt P, Suvisaari J, et al. Higher serum 25-hydroxyvitamin D concentrations are related to a reduced risk of depression[J]. Br J Nutr, 2015, 113(9): 1418-1426.
[41]
de Koning EJ, van Schoor NM, Penninx BW, et al. Vitamin D supplementation to prevent depression and poor physical function in older adults: study protocol of the D-Vitaal study, a randomized placebo-controlled clinical trial[J]. BMC Geriatr, 2015, 15: 151.
[42]
Gowda U, Mutowo MP, Smith BJ, et al. Vitamin D supplementation to reduce depression in adults: Meta-analysis of randomized controlled trials[J]. Nutrition, 2015, 31(3): 421-429.
[43]
Bahrami A, Mazloum SR, Maghsoudi S, et al. High Dose vitamin D supplementation is associated with a reduction in depression score among adolescent girls: a nine-week follow-up study[J]. J Diet Suppl, 2018, 15(2): 173-182.
[44]
Shaffer JA, Edmondson D, Wasson LT, et al. Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials[J]. Psychosom Med, 2014, 76(3): 190-196.
[45]
Li G, Mbuagbaw L, Samaan Z, et al. Efficacy of vitamin D supplementation in depression in adults: a systematic review[J]. J Clin Endocrinol Metab, 2014, 99(3): 757-767.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[7] 高金红, 陈玉梅, 郭韵. 基于King互动达标理论的心理疏导在腹腔镜肝癌切除术患者的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 517-520.
[8] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[9] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 刘思含, 张静. 老年人血清铁与C 反应蛋白的比值及25-羟基维生素D3 与肾功能受损的关系研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 268-272.
[12] 韩俊岭, 王刚, 马厉英, 连颖, 徐慧. 维生素D 联合匹维溴铵治疗腹泻型肠易激综合征患者疗效及对肠道屏障功能指标的影响研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 560-564.
[13] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 白杰, 王唯一, 陈超, 王帆, 肖新如. 神经外科住培医师职业倦怠及影响因素研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 662-670.
阅读次数
全文


摘要