切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 48 -51. doi: 10.3877/cma.j.issn.2095-123X.2019.01.011

所属专题: 文献

综述

维生素D的多重神经活性及其潜在的抗抑郁机制研究进展
陈丹1, 郭玉金1, 耿春梅1, 江沛1,()   
  1. 1. 272000 济宁市第一人民医院临床药学科
  • 收稿日期:2018-12-17 出版日期:2019-02-15
  • 通信作者: 江沛
  • 基金资助:
    国家自然科学基金(81602846); 山东省自然科学基金(ZR2016HQ21)

Advances in research on multiple neuroactivities of vitamin D and treatment of depression

Dan Chen1, Yujin Guo1, Chunmei Geng1, Pei Jiang1,()   

  1. 1. Department of Clinical Pharmacy, First People’s Hospital of Jining, Jining 272000, China
  • Received:2018-12-17 Published:2019-02-15
  • Corresponding author: Pei Jiang
  • About author:
    Corresponding author: Jiang Pei, Email:
引用本文:

陈丹, 郭玉金, 耿春梅, 江沛. 维生素D的多重神经活性及其潜在的抗抑郁机制研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(01): 48-51.

Dan Chen, Yujin Guo, Chunmei Geng, Pei Jiang. Advances in research on multiple neuroactivities of vitamin D and treatment of depression[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(01): 48-51.

抑郁症在世界范围内普遍存在,并导致死亡率的增加以及生活质量的下降。越来越多的证据表明抑郁症可能与维生素D缺乏有关。维生素D作为一种更简单和更易接受的治疗方式,其可能通过维生素D受体调节神经活动,维持神经细胞Ca2+平衡,减少炎症因子的表达,维持线粒体正常功能,并参与5-羟色胺的合成和活性氧稳态的调节,来实现预防和减轻抑郁的作用。本文就维生素D在改善抑郁中的可能作用机制及其缺乏与抑郁的关系进行综述。

Depression is widespread worldwide, leading to increased mortality and a decline in quality of life. There is growing evidence that depression may be associated with vitamin D deficiency. As a simpler and more acceptable pharmacological intervention, vitamin D may regulate nerve activity through vitamin D receptor, maintain the Ca2+ balance of nerve cells, reduce the expression of inflammatory factors, and maintain the normal function of mitochondria. It also participates in the synthesis of serotonin and the regulation of reactive oxygen homeostasis to prevent and alleviate depression. This article reviews the possible mechanism of vitamin D in improving depression and the relationship between vitamin D deficiency and depression.

[1]
Kessler RC. The costs of depression[J]. Psychiatr Clin North Am, 2012, 35(1): 1-14.
[2]
Druss BG, Hwang I, Petukhova M, et al. Impairment in role functioning in mental and chronic medical disorders in the United States: results from the National Comorbidity Survey Replication[J]. Mol Psychiatry, 2009, 14(7): 728-737.
[3]
WHO Guidelines Approved by the Guidelines Review Committee. mhGAP: mental health gap action programme: scaling up care for mental, neurological and substance use disorders[M]. Geneva: World Health Organization, 2008.
[4]
Soczynska JK, Mansur RB, Brietzke E, et al. Novel therapeutic targets in depression: Minocycline as a candidate treatment[J]. Behav Brain Res, 2012, 235(2): 302-317.
[5]
Narang P, Retzlaff A, Brar K, et al. Deep brain stimulation for treatment-refractory depression[J]. South Med J, 2016, 109(11): 700-703.
[6]
Anderson HD, Pace WD, Libby AM, et al. Rates of 5 common antidepressant side effects among new adult and adolescent cases of depression: a retrospective US claims study[J]. Clin Ther, 2012, 34(1): 113-123.
[7]
Eyles DW, Burne TH, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease[J]. Front Neuroendocrinol, 2013, 34(1): 47-64.
[8]
Holick MF. Vitamin D deficiency[J]. N Engl J Med, 2007, 375(3): 266-281.
[9]
Holick MF, Maclaughlin JA, Clark MB, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences[J]. Science, 1980, 210(4466): 203-205.
[10]
Kongsbak M, Levring TB, Geisler C, et al. The vitamin D receptor and T cell function[J]. Front Immunol, 2013, 4: 148.
[11]
Hendrix I, Anderson P, May B, et al. Regulation of gene expression by the CYP27B1 promoter-study of a transgenic mouse model[J]. J Steroid Biochem Mol Biol, 2004, 89-90(1-5): 139-142.
[12]
Puchacz E, Stumpf WE, Stachowiak EK, et al. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells[J]. Brain Res Mol Brain Res, 1996, 36(1): 193-196.
[13]
Newell KA, Matosin N. Rethinking metabotropic glutamate receptor 5 pathological findings in psychiatric disorders: implications for the future of novel therapeutics[J]. BMC Psychiatry, 2014, 14: 23.
[14]
Berridge MJ. Vitamin D and depression: cellular and regulatory mechanisms[J]. Pharmacol Rev, 2017, 69(2): 80-92.
[15]
Wohleb ES, Gerhard D, Thomas A, et al. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine[J]. Curr Neuropharmacol, 2017, 15(1): 11-20.
[16]
Wyskiel DR, Andrade R. Serotonin excites hippocampal CA1 GABAergic interneurons at the stratum radiatum-stratum lacunosum moleculare border[J]. Hippocampus, 2016, 26(9): 1107-1114.
[17]
Schlecker C, Boehmerle W, Jeromin A, et al. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium[J]. J Clin Invest, 2006, 116(6): 1668-1674.
[18]
Soeiro-de-Souza MG, Salvadore G, Moreno RA, et al. Bcl-2 rs956572 polymorphism is associated with increased anterior cingulate cortical glutamate in euthymic bipolar I disorder[J]. Neuropsychopharmacology, 2013, 38(3): 468-475.
[19]
Friedman AK, Juarez B, Ku SM, et al. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism[J]. Nat Commun, 2016, 7: 11671.
[20]
Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption[J]. J Nutr, 2004, 134(11): 3137-3139.
[21]
Brewer LD, Thibault V, Chen KC, et al. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons[J]. J Neurosci, 2001, 21(1): 98-108.
[22]
Gezen-Ak D, Dursun E, Yilmazer S. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons[J]. PLoS One, 2011, 6(3): e17553.
[23]
Zhang C, Wu Z, Zhao G, et al. Identification of IL6 as a susceptibility gene for major depressive disorder[J]. Sci Rep, 2016, 6: 31264.
[24]
Xia L, Zhang D, Wang C, et al. PC-PLC is involved in osteoclastogenesis induced by TNF-α through upregulating IP3R1 expression[J]. FEBS Lett, 2012, 586(19): 3341-3348.
[25]
Dean B, Gibbons AS, Tawadros N, et al. Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders[J]. Mol Psychiatry, 2013, 18(7): 767-773.
[26]
Wei R, Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D[J]. Nutrients, 2015, 7(10): 8251-8260.
[27]
Barbosa IG, Machado-Vieira R, Soares JC, et al. The immunology of bipolar disorder[J]. Neuroimmunomodulation, 2014, 21(2-3): 117-122.
[28]
Bánsághi S, Golenár T, Madesh M, et al. Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species[J]. J Biol Chem, 2014, 289(12): 8170-8181.
[29]
Lock JT, Sinkins WG, Schilling WP. Effect of protein S-glutathionylation on Ca2+ homeostasis in cultured aortic endothelial cells[J]. Am J Physiol Heart Circ Physiol, 2011, 300(2): H493-506.
[30]
Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from?[J]. BMC Med, 2013, 11: 200.
[31]
Consiglio M, Viano M, Casarin S, et al. Mitochondrial and lipogenic effects of vitamin D on differentiating and proliferating human keratinocytes[J]. Exp Dermatol, 2015, 24(10): 748-753.
[32]
Silvagno F, De Vivo E, Attanasio A, et al. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes[J]. PLoS One, 2010, 5(1): e8670.
[33]
Ryan ZC, Craig TA, Folmes CD, et al. 1α,25-dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells[J]. J Biol Chem, 2016, 291(3): 1514-1528.
[34]
Catena-Dell’Osso M, Bellantuono C, Consoli G, et al. Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development?[J]. Curr Med Chem, 2011, 18(2): 245-255.
[35]
Thompson SM, Kallarackal AJ, Kvarta MD, et al. An excitatory synapse hypothesis of depression[J]. Trends Neurosci, 2015, 38(5): 279-294.
[36]
Chabas JF, Alluin O, Rao G, et al. Vitamin D2 potentiates axon regeneration[J]. J Neurotrauma, 2008, 25(10): 1247-1256.
[37]
Grecksch G, Rüthrich H, Höllt V, et al. Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats[J]. Psychoneuroendocrinology, 2009, 34(Suppl 1): S258-264.
[38]
Gezenak D, Dursun E, Yilmazer S. The effect of vitamin D treatment on nerve growth factor (NGF) release from hippocampal neurons[J]. Noro Psikiyatri Arsivi, 2014, 51(2): 157-162.
[39]
Björkhem-Bergman L, Bergman P. Vitamin D and patients with palliative cancer[J]. BMJ Support Palliat Care, 2016, 6(3): 287-291.
[40]
Jääskeläinen T, Knekt P, Suvisaari J, et al. Higher serum 25-hydroxyvitamin D concentrations are related to a reduced risk of depression[J]. Br J Nutr, 2015, 113(9): 1418-1426.
[41]
de Koning EJ, van Schoor NM, Penninx BW, et al. Vitamin D supplementation to prevent depression and poor physical function in older adults: study protocol of the D-Vitaal study, a randomized placebo-controlled clinical trial[J]. BMC Geriatr, 2015, 15: 151.
[42]
Gowda U, Mutowo MP, Smith BJ, et al. Vitamin D supplementation to reduce depression in adults: Meta-analysis of randomized controlled trials[J]. Nutrition, 2015, 31(3): 421-429.
[43]
Bahrami A, Mazloum SR, Maghsoudi S, et al. High Dose vitamin D supplementation is associated with a reduction in depression score among adolescent girls: a nine-week follow-up study[J]. J Diet Suppl, 2018, 15(2): 173-182.
[44]
Shaffer JA, Edmondson D, Wasson LT, et al. Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials[J]. Psychosom Med, 2014, 76(3): 190-196.
[45]
Li G, Mbuagbaw L, Samaan Z, et al. Efficacy of vitamin D supplementation in depression in adults: a systematic review[J]. J Clin Endocrinol Metab, 2014, 99(3): 757-767.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[3] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 方道成, 胡媛媛. 钙和维生素D与肾结石形成关系的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 653-656.
[6] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[9] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[10] 付强, 秦丽媛, 李全波. 神经病理性疼痛患者血清miR-15a水平及意义分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 293-298.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 潘惠, 王明, 杨忠, 杜向东. 低频重复经颅磁刺激辅助治疗伴不同特征抑郁症的对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 562-568.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要