切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 246 -250. doi: 10.3877/cma.j.issn.2095-123X.2019.04.014

所属专题: 文献

综述

虾青素对创伤性颅脑损伤保护作用的研究进展
陈昊阳1, 王翀2,()   
  1. 1. 272000 济宁,济宁医学院临床医学院
    2. 201318 上海,上海健康医学院附属周浦医院神经外科
  • 收稿日期:2019-07-13 出版日期:2019-08-15
  • 通信作者: 王翀

Research progress on the protective effect of astaxanthin on traumatic brain injury

Haoyang Chen1, Chong Wang2,()   

  1. 1. Clinical Medicine College of Jining Medical University, Jining 272000, China
    2. Department of Neurosurgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
  • Received:2019-07-13 Published:2019-08-15
  • Corresponding author: Chong Wang
  • About author:
    Corresponding author: Wang Chong, Email:
引用本文:

陈昊阳, 王翀. 虾青素对创伤性颅脑损伤保护作用的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(04): 246-250.

Haoyang Chen, Chong Wang. Research progress on the protective effect of astaxanthin on traumatic brain injury[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(04): 246-250.

创伤性颅脑损伤(TBI)致死、致残率高,严重危害人类健康,TBI后的继发级联损伤是导致患者预后不良的重要原因。有效地治疗继发性脑损伤是降低TBI致残率,改善患者预后,提高生活质量的重要环节。虾青素(ATX)是一种天然的类胡萝卜素,具有多种生物学活性。许多研究表明了ATX在对抗中枢神经系统急慢性损伤中产生的氧化应激、炎症反应以及改善颅脑灌注、保护神经等方面有良好作用。本文针对ATX对TBI的保护作用机制及研究进展综述如下。

Traumatic brain injury (TBI) is fatal and has a high disability rate, which is a serious hazard to human health. Secondary cascading injury after TBI is an important cause of poor prognosis. Effective treatment of secondary brain injury is an important part of reducing TBI disability, improving patient prognosis and improving quality of life. Astaxanthin (ATX) is a natural carotenoid with a variety of biological activities. Many studies have shown that ATX has a good effect on fighting acute and chronic damage of the central nervous system, oxidative stress, inflammatory response, improving perfusion, and protecting nerves. The protective mechanism and research progress of ATX on TBI are summarized as follows.

图1 虾青素的立体异构体
表1 虾青素对创伤性颅脑损伤保护作用总结
[12]
Kamezaki C,Nakashima A,Yamada A, et al. Synergistic antioxidative effect of astaxanthin and tocotrienol by co-encapsulated in liposomes[J]. J Clin Biochem Nutr, 2016, 59(2): 100-106.
[13]
Yuan JP,Chen F. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of haematococcus pluvialis during saponification[J]. J Agric Food Chem, 1999, 47(1): 31-35.
[14]
Albulishi MSM,Changhu X,Tang QJ. Health aspects of astaxanthin: a review[J]. Canad J Clin Nutr, 2015, 3(2): 71-78.
[15]
Guerin M,Huntley ME,Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition[J]. Trends Biotechnol, 2003, 21(5): 210-216.
[16]
Régnier P,Bastias J,Rodriguez-Ruiz V, et al. Astaxanthin from haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity[J]. Mar Drugs, 2015, 13(5): 2857-2874.
[17]
Moran NE,Mohn ES,Hason N, et al. Intrinsic and extrinsic factors impacting absorption, metabolism, and health effects of dietary carotenoids[J]. Adv Nutr, 2018, 9(4): 465-492.
[18]
Viera I,Pérez-Gálvez A,Roca M. Bioaccessibility of marine carotenoids[J]. Mar Drugs, 2018, 16(10). pii: E397.
[19]
Ranga Rao A,Raghunath Reddy RL,Baskaran V, et al. Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model[J]. J Agric Food Chem, 2010, 58(15): 8553-8559.
[20]
Stewart JS,Lignell A,Pettersson A, et al. Safety assessment of astaxanthin-rich microalgae biomass: acute and subchronic toxicity studies in rats[J]. Food Chem Toxicol, 2008, 46(9): 3030-3036.
[21]
Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential[J]. Altern Med Rev, 2011, 16(4): 355-364.
[22]
Hiebert JB,Shen Q,Thimmesch AR, et al. Traumatic brain injury and mitochondrial dysfunction[J]. Am J Med Sci, 2015, 350(2): 132-138.
[23]
Khatri N,Thakur M,Pareek V, et al. Oxidative stress: major threat in traumatic brain injury[J]. CNS Neurol Disord Drug Targets, 2018, 17(9): 689-695.
[24]
Lee DH,Kim CS,Lee YJ. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro[J]. Food Chem Toxicol, 2011, 49(1): 271-280.
[25]
Augusti PR,Quatrin A,Somacal S, et al. Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits[J]. J Clin Biochem Nutr, 2012, 51(1): 42-49.
[26]
Saw CL,Yang AY,Guo Y, et al. Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway[J]. Food Chem Toxicol, 2013, 62: 869-875.
[27]
Zolnourian A,Galea I,Bulters D. Neuroprotective role of the Nrf2 pathway in subarachnoid haemorrhage and its therapeutic potential[J]. Oxid Med Cell Longev, 2019, 2019: 6218239.
[28]
Kim JH,Choi W,Lee JH, et al. Astaxanthin inhibits H2O2-mediated apoptotic cell death in mouse neural progenitor cells via modulation of P38 and MEK signaling pathways[J]. J Microbiol Biotechnol, 2009, 19(11): 1355-1363.
[29]
Balietti M,Giannubilo SR,Giorgetti B, et al. The effect of astaxanthin on the aging rat brain: gender-related differences in modulating inflammation[J]. J Sci Food Agric, 2016, 96(2): 615-618.
[30]
Zhang XS,Zhang X,Wu Q, et al. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage[J]. J Surg Res, 2014, 192(1): 206-213.
[31]
Wen X,Xiao L,Zhong Z, et al. Astaxanthin acts via LRP-1 to inhibit inflammation and reverse lipopolysaccharide-induced M1/M2 polarization of microglial cells[J]. Oncotarget, 2017, 8(41): 69370-69385.
[32]
Laird MD,Sukumari-Ramesh S,Swift AE, et al. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4?[J]. J Neurochem, 2010, 113(3): 637-648.
[33]
Hui H,Rao W,Zhang L, et al. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter-1 attenuates traumatic brain injury-induced neuronal apoptosis via regulation of Erk signaling[J]. Neurochem Int, 2016, 94: 23-31.
[34]
Zhang M,Cui Z,Cui H, et al. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice[J]. BMC Neurosci, 2016, 17(1): 60.
[35]
Zhang M,Cui Z,Cui H. Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-κB signaling pathway[J]. BMC Neurosci, 2017, 18(1): 42.
[36]
Acosta SA,Tajiri N,de la Pena I, et al. Alpha-synuclein as a pathological link between chronic traumatic brain injury and parkinson's disease[J]. J Cell Physiol, 2015, 230(5): 1024-1032.
[37]
Dams-O’Connor K,Guetta G,Hahn-Ketter AE, et al. Traumatic brain injury as a risk factor for alzheimer’s disease: current knowledge and future directions[J]. Neurodegener Dis Manag, 2016, 6(5): 417-429.
[38]
Emmerling MR,Morganti-Kossmann MC,Kossmann T, et al. Traumatic brain injury elevates the alzheimer’s amyloid peptide a beta 42 in human CSF. A possible role for nerve cell injury[J]. Ann N Y Acad Sci, 2000, 903: 118-122.
[39]
Nakagawa K,Kiko T,Miyazawa T, et al. Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes[J]. Br J Nutr, 2011, 105(11): 1563-1571.
[40]
Wu H,Niu H,Shao A, et al. Astaxanthin as a potential neuroprotective agent for neurological diseases[J]. Mar Drugs, 2015, 13(9): 5750-5766.
[41]
Manabe Y,Komatsu T,Seki S, et al. Dietary astaxanthin can accumulate in the brain of rats[J]. Biosci Biotechnol Biochem, 2018, 82(8): 1433-1436.
[1]
Salehi A,Zhang JH,Obenaus A. Response of the cerebral vasculature following traumatic brain injury[J]. J Cereb Blood Flow Metab, 2017, 37(7): 2320-2339.
[2]
Sorby-Adams AJ,Marcoionni AM,Dempsey ER, et al. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury[J]. Int J Mol Sci, 2017, 18(8). pii: E1788.
[3]
Nikolian VC,Dekker SE,Bambakidis T, et al. Improvement of blood-brain barrier integrity in traumatic brain injury and hemorrhagic shock following treatment with valproic acid and fresh frozen plasma[J]. Crit Care Med, 2018, 46(1): e59-e66.
[4]
Langlois JA,Rutland-Brown W,Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview[J]. J Head Trauma Rehabil, 2006, 21(5): 375-378.
[5]
Mioni G,Grondin S,Stablum F. Temporal dysfunction in traumatic brain injury patients: primary or secondary impairment?[J]. Front Hum Neurosci, 2014, 8: 269.
[6]
Maas AIR,Menon DK,Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16(12): 987-1048.
[42]
Wen X,Huang A,Hu J, et al. Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: involvement of the Akt/GSK-3β pathway[J]. Neuroscience, 2015, 303: 558-568.
[43]
Fakhri S,Aneva IY,Farzaei MH, et al. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective[J]. Molecules, 2019, 24(14). pii: E2640.
[7]
Fassett RG,Coombes JS. Astaxanthin: a potential therapeutic agent in cardiovascular disease[J]. Mar Drugs, 2011, 9(3): 447-465.
[8]
Zhang J,Sun Z,Sun P, et al. Microalgal carotenoids: beneficial effects and potential in human health[J]. Food Funct, 2014, 5(3): 413-425.
[9]
Grimmig B,Kim SH,Nash K, et al. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration[J]. Geroscience, 2017, 39(1): 19-32.
[10]
Ji X,Peng D,Zhang Y, et al. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury[J]. Brain Res, 2017, 1659: 88-95.
[11]
Ambati RR,Phang SM,Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review[J]. Mar Drugs, 2014, 12(1): 128-152.
[1] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[2] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[3] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[6] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[7] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[8] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[9] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[10] 冯铭, 孙洪涛. 动脉瘤性蛛网膜下腔出血的颅内压监测与管理[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 248-253.
[11] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[12] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[13] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[14] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[15] 耿晓坤. 缺血性卒中后无效再灌注的时间窗、组织窗与神经保护[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 636-636.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?