切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 257 -261. doi: 10.3877/cma.j.issn.2095-123X.2019.05.001

所属专题: 文献

述评

脑损伤炎症反应与干细胞免疫调控研究
徐如祥1,(), 高谋2   
  1. 1. 610072 成都,四川省人民医院神经外科
    2. 100048 北京,解放军总医院第六医学中心神经外科
  • 收稿日期:2019-09-19 出版日期:2019-10-15
  • 通信作者: 徐如祥

Immunomodulatory effects of stem cells on neuroinflammation following brain injury

Ruxiang Xu1(), Mou Gao2   

  • Received:2019-09-19 Published:2019-10-15
  • Corresponding author: Ruxiang Xu
引用本文:

徐如祥, 高谋. 脑损伤炎症反应与干细胞免疫调控研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(05): 257-261.

Ruxiang Xu, Mou Gao. Immunomodulatory effects of stem cells on neuroinflammation following brain injury[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(05): 257-261.

脑损伤炎症反应以多种免疫细胞活化、细胞因子释放以及补体系统激活等为主要特征,在脑损伤发生发展各个阶段发挥着复杂而又重要的作用,既可促进神经修复,也可加重神经损伤。以干细胞免疫调控技术为主的治疗方法有望实现精准调控脑损伤炎症反应和促进神经再生修复的目标。

[1]
Simon DW, McGeachy MJ, Bayir H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury[J]. Nat Rev Neurol, 2017, 13(3): 171-191.
[2]
Shi K, Tian DC, Li ZG, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058-1066.
[3]
Morganti-Kossmann MC, Semple BD, Hellewell SC, et al. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments[J]. Acta Neuropathol, 2019, 137(5): 731-755.
[4]
Hu X, Leak RK, Thomson AW, et al. Promises and limitations of immune cell-based therapies in neurological disorders[J]. Nat Rev Neurol, 2018, 14(9): 559-568.
[5]
Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury[J]. Science, 2016, 353(6301): 783-785.
[6]
Ritzel RM, Lai YJ, Crapser JD, et al. Aging alters the immunological response to ischemic stroke[J]. Acta Neuropathol, 2018, 136(1): 89-110.
[7]
Chang CF, Goods BA, Askenase MH, et al. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage[J]. J Clin Invest, 2018, 128(2): 607-624.
[8]
Steinman L. Role reversal: infiltrating T cells protect the brain[J]. J Clin Invest, 2015, 125(2): 493-494.
[9]
Dombrowski Y, O’Hagan T, Dittmer M, et al. Regulatory T cells promote myelin regeneration in the central nervous system[J]. Nat Neurosci, 2017, 20(5): 674-680.
[10]
Skelly DT, Griffin EW, Murray CL, et al. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms[J]. Mol Psychiatry, 2019, 24(10): 1533-1548.
[11]
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease[J]. Semin Immunol, 2019, 45: 101340.
[12]
Hammad A, Westacott L, Zaben M. Correction to: the role of the complement system in traumatic brain injury: a review[J]. J Neuroinflammation, 2018, 15(1): 59.
[13]
Dabrowska S, Andrzejewska A, Lukomska B, et al. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles[J]. J Neuroinflammation, 2019, 16(1): 178.
[14]
Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160.
[15]
Reis M, Mavin E, Nicholson L, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function[J]. Front Immunol, 2018, 9: 2538.
[16]
Hotchkiss KM, Clark NM, Olivares-Navarrete R. Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials, 2018, 182: 202-215.
[17]
Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14(8): 493-507.
[18]
Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury[J]. Brain Behav Immun, 2017, 60: 220-232.
[19]
Peruzzotti-Jametti L, Bernstock JD, Vicario N, et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation[J]. Cell Stem Cell, 2018, 22: 355-368.
[20]
Kokaia Z, Martino G, Schwartz M, et al. Cross-talk between neural stem cells and immune cells: the key to better brain repair[J]. Nat Neurosci, 2012, 15(8): 1078-1087.
[21]
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in alzheimer’s disease[J]. Exp Neurol, 2020, 324: 113112.
[22]
高谋,徐如祥,杨志军,等.两种干细胞对颅脑创伤炎症反应调控作用的对比研究[J].第三军医大学学报, 2015, 37(17): 1697-1703.
[23]
Sheng C, Jungverdorben J, Wiethoff H, et al. A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation[J]. Nat Commun, 2018, 9: 4047.
[24]
Kim SM, Flakamp H, Hermann A, et al. Direct conversion of mouse fibroblasts into induced neural stem cells[J]. Nat Protoc, 2014, 9(4): 871-881.
[25]
Gao M, Yao H, Dong Q, et al. Neurotrophy and immunomodulation of induced neural stem cell grafts in a mouse model of closed head injury[J]. Stem Cell Res, 2017, 23: 132-142.
[26]
Gao M, Dong Q, Yao H, et al. Induced neural stem cells modulate microglia activation states via CXCL12/CXCR4 signaling[J]. Brain Behav Immun, 2017, 59: 288-299.
[27]
Gao M, Dong Q, Yao H, et al. Systemic administration of induced stem cells regulates complement activation in mouse closed head injury models[J]. Sci Rep, 2017, 7: 45989.
[28]
Gao M, Dong Q, Lu Y, et al. Induced neural stem cell-derived astrocytes modulate complement activation and mediate neuroprotection following closed head injury[J]. Cell Death Dis, 2018, 9(2): 101.
[29]
Carney N, Totten AM, O’reilly C, et al. Guidelines for the management of severe traumatic brain injury[J]. Neurosurgery, 2017, 80(1): 6-15.
[30]
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges[J]. Cell Stem Cell, 2015, 17(1): 11-22.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[5] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[6] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[7] 司钦亮, 毕世龙, 焦慧骁, 李世照, 陈哲禹, 武玉东. 精索去分化脂肪肉瘤两例并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 585-590.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[11] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[14] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[15] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?