切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 257 -261. doi: 10.3877/cma.j.issn.2095-123X.2019.05.001

所属专题: 文献

述评

脑损伤炎症反应与干细胞免疫调控研究
徐如祥1,(), 高谋2   
  1. 1. 610072 成都,四川省人民医院神经外科
    2. 100048 北京,解放军总医院第六医学中心神经外科
  • 收稿日期:2019-09-19 出版日期:2019-10-15
  • 通信作者: 徐如祥

Immunomodulatory effects of stem cells on neuroinflammation following brain injury

Ruxiang Xu1(), Mou Gao2   

  • Received:2019-09-19 Published:2019-10-15
  • Corresponding author: Ruxiang Xu
引用本文:

徐如祥, 高谋. 脑损伤炎症反应与干细胞免疫调控研究[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(05): 257-261.

Ruxiang Xu, Mou Gao. Immunomodulatory effects of stem cells on neuroinflammation following brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(05): 257-261.

脑损伤炎症反应以多种免疫细胞活化、细胞因子释放以及补体系统激活等为主要特征,在脑损伤发生发展各个阶段发挥着复杂而又重要的作用,既可促进神经修复,也可加重神经损伤。以干细胞免疫调控技术为主的治疗方法有望实现精准调控脑损伤炎症反应和促进神经再生修复的目标。

[1]
Simon DW, McGeachy MJ, Bayir H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury[J]. Nat Rev Neurol, 2017, 13(3): 171-191.
[2]
Shi K, Tian DC, Li ZG, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058-1066.
[3]
Morganti-Kossmann MC, Semple BD, Hellewell SC, et al. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments[J]. Acta Neuropathol, 2019, 137(5): 731-755.
[4]
Hu X, Leak RK, Thomson AW, et al. Promises and limitations of immune cell-based therapies in neurological disorders[J]. Nat Rev Neurol, 2018, 14(9): 559-568.
[5]
Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury[J]. Science, 2016, 353(6301): 783-785.
[6]
Ritzel RM, Lai YJ, Crapser JD, et al. Aging alters the immunological response to ischemic stroke[J]. Acta Neuropathol, 2018, 136(1): 89-110.
[7]
Chang CF, Goods BA, Askenase MH, et al. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage[J]. J Clin Invest, 2018, 128(2): 607-624.
[8]
Steinman L. Role reversal: infiltrating T cells protect the brain[J]. J Clin Invest, 2015, 125(2): 493-494.
[9]
Dombrowski Y, O’Hagan T, Dittmer M, et al. Regulatory T cells promote myelin regeneration in the central nervous system[J]. Nat Neurosci, 2017, 20(5): 674-680.
[10]
Skelly DT, Griffin EW, Murray CL, et al. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms[J]. Mol Psychiatry, 2019, 24(10): 1533-1548.
[11]
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease[J]. Semin Immunol, 2019, 45: 101340.
[12]
Hammad A, Westacott L, Zaben M. Correction to: the role of the complement system in traumatic brain injury: a review[J]. J Neuroinflammation, 2018, 15(1): 59.
[13]
Dabrowska S, Andrzejewska A, Lukomska B, et al. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles[J]. J Neuroinflammation, 2019, 16(1): 178.
[14]
Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160.
[15]
Reis M, Mavin E, Nicholson L, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function[J]. Front Immunol, 2018, 9: 2538.
[16]
Hotchkiss KM, Clark NM, Olivares-Navarrete R. Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials, 2018, 182: 202-215.
[17]
Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14(8): 493-507.
[18]
Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury[J]. Brain Behav Immun, 2017, 60: 220-232.
[19]
Peruzzotti-Jametti L, Bernstock JD, Vicario N, et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation[J]. Cell Stem Cell, 2018, 22: 355-368.
[20]
Kokaia Z, Martino G, Schwartz M, et al. Cross-talk between neural stem cells and immune cells: the key to better brain repair[J]. Nat Neurosci, 2012, 15(8): 1078-1087.
[21]
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in alzheimer’s disease[J]. Exp Neurol, 2020, 324: 113112.
[22]
高谋,徐如祥,杨志军,等.两种干细胞对颅脑创伤炎症反应调控作用的对比研究[J].第三军医大学学报, 2015, 37(17): 1697-1703.
[23]
Sheng C, Jungverdorben J, Wiethoff H, et al. A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation[J]. Nat Commun, 2018, 9: 4047.
[24]
Kim SM, Flakamp H, Hermann A, et al. Direct conversion of mouse fibroblasts into induced neural stem cells[J]. Nat Protoc, 2014, 9(4): 871-881.
[25]
Gao M, Yao H, Dong Q, et al. Neurotrophy and immunomodulation of induced neural stem cell grafts in a mouse model of closed head injury[J]. Stem Cell Res, 2017, 23: 132-142.
[26]
Gao M, Dong Q, Yao H, et al. Induced neural stem cells modulate microglia activation states via CXCL12/CXCR4 signaling[J]. Brain Behav Immun, 2017, 59: 288-299.
[27]
Gao M, Dong Q, Yao H, et al. Systemic administration of induced stem cells regulates complement activation in mouse closed head injury models[J]. Sci Rep, 2017, 7: 45989.
[28]
Gao M, Dong Q, Lu Y, et al. Induced neural stem cell-derived astrocytes modulate complement activation and mediate neuroprotection following closed head injury[J]. Cell Death Dis, 2018, 9(2): 101.
[29]
Carney N, Totten AM, O’reilly C, et al. Guidelines for the management of severe traumatic brain injury[J]. Neurosurgery, 2017, 80(1): 6-15.
[30]
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges[J]. Cell Stem Cell, 2015, 17(1): 11-22.
[1] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[2] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[5] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[6] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[9] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[10] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[11] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[12] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要