切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (06) : 370 -373. doi: 10.3877/cma.j.issn.2095-123X.2020.06.012

所属专题: 文献

综述

组织透明化技术在非人灵长类神经退行性疾病研究中的应用进展
庄旭东1, 王心睿1,()   
  1. 1. 350013 福州,福建医科大学附属福建省妇幼保健院国家卫健委非人灵长类生育调节技术评价重点实验室
  • 收稿日期:2020-08-11 出版日期:2020-12-15
  • 通信作者: 王心睿

Recent advance in role of tissue clearing in neurodegenerative diseases of non-human primate

Xudong Zhuang1, Xinrui Wang1,()   

  1. 1. Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350013, China
  • Received:2020-08-11 Published:2020-12-15
  • Corresponding author: Xinrui Wang
引用本文:

庄旭东, 王心睿. 组织透明化技术在非人灵长类神经退行性疾病研究中的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(06): 370-373.

Xudong Zhuang, Xinrui Wang. Recent advance in role of tissue clearing in neurodegenerative diseases of non-human primate[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(06): 370-373.

组织透明化技术主要是通过减少光的散射和吸收2种途径对组织进行处理,实现组织透明化,结合光学成像和数据整理与分析,促进了人们对生物体在个体、器官、细胞和亚细胞的结构和功能的观察与解析。本文围绕组织透明化技术在非人灵长类神经退行性疾病研究方面的应用进展综述如下。

Tissue clearing is mainly processed by reducing light scattering and light absorption, so as to achieve tissue transparency. Combined with optical imaging and data collation and analysis, it accelerates the observation and analysis of the structure and function of organisms in individuals, organs, cells and subcells. This review focuses on the application progress of tissue clearing in neurodegenerative diseases of non-human primate.

[37]
Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis[J]. N Engl J Med, 2018, 378(2): 169-180.
[38]
Erturk A, Mauch CP, Hellal F, et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury[J]. Nat Med, 2011, 18(1): 166-171.
[39]
Spence RD, Kurth F, Itoh N, et al. Bringing CLARITY to gray matter atrophy[J]. Neuroimage, 2014, 101: 625-632.
[40]
’t Hart BA, Laman JD, Kap YS. Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery[J]. Expert Opin Drug Discov, 2018, 13(5): 387-397.
[41]
Carvalho RHF, Real CC, Cinini S, et al. [11C]PIB PET imaging can detect white and grey matter demyelination in a non-human primate model of progressive multiple sclerosis[J]. Mult Scler Relat Disord, 2019, 35: 108-115.
[42]
Kalia LV, Lang AE. Parkinson’s disease[J]. Lancet, 2015, 386(9996): 896-912.
[43]
Grayson M. Parkinson’s disease[J]. Nature, 2016, 538(7626): S1.
[44]
Deniston CK, Salogiannis J, Mathea S, et al. Structure of LRRK2 in Parkinson’s disease and model for microtubule interaction[J]. Nature, 2020, 588(7837): 344-349.
[45]
Liu AK, Hurry ME, Ng OT, et al. Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions[J]. Neuropathol Appl Neurobiol, 2016, 42(6): 573-587.
[46]
Menegas W, Bergan JF, Ogawa SK, et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass[J]. Elife, 2015, 4: e10032.
[47]
Morissette M, Di Paolo T. Non-human primate models of PD to test novel therapies[J]. J Neural Transm (Vienna), 2018, 125(3): 291-324.
[48]
Seo J, Lee Y, Kim BS, et al. A non-human primate model for stable chronic Parkinson’s disease induced by MPTP administration based on individual behavioral quantification[J]. J Neurosci Methods, 2019, 311: 277-287.
[1]
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases[J]. Cold Spring Harb Perspect Biol, 2017, 9(7): a028035.
[2]
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice[J]. J Clin Pathol, 2019, 72(11): 725-735.
[3]
Fisher EMC, Bannerman DM. Mouse models of neurodegeneration: Know your question, know your mouse[J]. Sci Transl Med, 2019, 11(493): eaaq1818.
[4]
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: integrating neuroscience and behavior[J]. Exp Neurol, 2018, 299(Pt A): 252-265.
[5]
Barbosa-Morais NL, Irimia M, Pan Q, et al. The evolutionary landscape of alternative splicing in vertebrate species[J]. Science, 2012, 338(6114): 1587-1593.
[6]
Phillips KA, Bales KL, Capitanio JP, et al. Why primate models matter[J]. Am J Primatol, 2014, 76(9): 801-827.
[7]
Chen XK, Kwan JS, Chang RC, et al. 1-phenyl 2-thiourea (PTU) activates autophagy in zebrafish embryos[J]. Autophagy, 2020: Online ahead of print.
[8]
Marques JC, Li M, Schaak D, et al. Internal state dynamics shape brainwide activity and foraging behaviour[J]. Nature, 2020, 577(7789): 239-243.
[9]
Susaki EA, Shimizu C, Kuno A, et al. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues[J]. Nat Commun, 2020, 11(1): 1982.
[10]
Susaki EA, Tainaka K, Perrin D, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis[J]. Cell, 2014, 157(3): 726-739.
[11]
蒲慕明.脑科学研究的三大发展方向[J].中国科学院院刊, 2019, 34(7): 807-813.
[12]
Tainaka K, Kubota SI, Suyama TQ, et al. Whole-body imaging with single-cell resolution by tissue decolorization[J]. Cell, 2014, 159(4): 911-924.
[13]
Richardson DS, Lichtman JW. Clarifying tissue clearing[J]. Cell, 2015, 162(2): 246-257.
[14]
Jing D, Yi Y, Luo W, Zhang S, et al. Tissue clearing and its application to bone and dental tissues[J]. J Dent Res, 2019, 98(6): 621-631.
[15]
Ueda HR, Erturk A, Chung K, et al. Tissue clearing and its applications in neuroscience[J]. Nat Rev Neurosci, 2020, 21(2): 61-79.
[16]
王培新,张丹,尚爱加,等.组织透明技术[J].神经解剖学杂志, 2016, 32(1): 124-128.
[17]
Høgh P. Alzheimer’s disease[J]. Ugeskr Laeger, 2017, 179(12): V09160686.
[18]
Hodson R. Alzheimer’s disease[J]. Nature, 2018, 559(7715): S1.
[19]
Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease[J]. Clin Med (Lond), 2016, 16(3): 247-253.
[20]
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment[J]. F1000Res, 2018, 7: F1000
[21]
Ando K, Laborde Q, Lazar A, et al. Inside Alzheimer brain with clarity: senile plaques, neurofibrillary tangles and axons in 3-D[J]. Acta Neuropathol, 2014, 128(3): 457-459.
[22]
Liebmann T, Renier N, Bettayeb K, et al. Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method[J]. Cell Rep, 2016, 16(4): 1138-1152.
[23]
Vints K, Vandael D, Baatsen P, et al. Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons[J]. Sci Rep, 2019, 9(1): 130.
[24]
Li HW, Zhang L, Qin C. Current state of research on non-human primate models of Alzheimer’s disease[J]. Animal Model Exp Med, 2019, 2(4): 227-238.
[25]
Gary C, Lam S, Herard AS, et al. Encephalopathy induced by Alzheimer brain inoculation in a non-human primate[J]. Acta Neuropathol Commun, 2019, 7(1): 126.
[26]
Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery[J]. Expert Opin Drug Discov, 2017, 12(2): 187-200.
[27]
Owens B. Amyotrophic lateral sclerosis[J]. Nature, 2017, 550(7676): S105.
[28]
Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis[J]. N Engl J Med, 2017, 377(2): 162-172.
[29]
Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis[J]. Nat Rev Dis Primers, 2017, 3: 17071.
[30]
Hruska M, Henderson N, Marchand S, et al. Synaptic nanomodules underlie the organization and plasticity of spine synapses[J]. Nat Neurosci, 2018, 21(5): 671-682.
[31]
Morawski M, Kirilina E, Scherf N, et al. Developing 3D microscopy with clarity on human brain tissue: towards a tool for informing and validating MRI-based histology[J]. Neuroimage, 2018, 182: 417-428.
[32]
Lee E, Choi J, Jo Y, et al. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging[J]. Sci Rep, 2016, 6: 18631.
[33]
Uchida A, Sasaguri H, Kimura N, et al. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43[J]. Brain, 2012, 135(Pt 3): 833-846.
[34]
Yin P, Guo X, Yang W, et al. Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains[J]. Acta Neuropathol, 2019, 137(6): 919-937.
[35]
Thompson AJ, Baranzini SE, Geurts J, et al. Multiple sclerosis[J]. Lancet, 2018, 391(10130): 1622-1636.
[36]
Correale J, GaitanMI, Ysrraelit MC, et al. Progressive multiple sclerosis: from pathogenic mechanisms to treatment[J]. Brain, 2016, 140(3): 527-546.
[1] 雷双银, 习剑鑫, 贺羽轩, 姚静宜, 石博雅, 马杰, 池光范, 李美英. 间充质干细胞源外泌体在神经退行性疾病治疗中的应用与进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 93-100.
[2] 刘小利, 严静. RNA-Seq在老年神经退行性疾病研究中的应用[J]. 中华老年病研究电子杂志, 2016, 03(04): 23-32.
阅读次数
全文


摘要