[1] |
|
[2] |
Toyoda K, Yoshimura S, Nakai M, et al. Twenty-year change in severity and outcome of ischemic and hemorrhagic strokes[J]. JAMA Neurol, 2022, 79(1): 61-69. DOI: 10.1001/jamaneurol.2021.4346.
|
[3] |
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/s1474-4422(21)00252-0.
|
[4] |
周脉耕,薛明.中国死因监测数据集2019[M].北京:中国科学技术出版社, 2020.
|
[5] |
Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the global burden of disease study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. DOI: 10.1016/s2468-2667(21)00228-0.
|
[6] |
|
[7] |
Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain[J]. Nature, 2012, 483(7388): 213-217. DOI: 10.1038/nature10841.
|
[8] |
Sundt TM Jr, Waltz AG. Experimental cerebral infarction: Retro-orbital, extradural approach for occluding the middle cerebral artery[J]. Mayo Clin Proc, 1966, 41(3): 159-168.
|
[9] |
Hudgins WR, Garcia JH. Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies[J]. Stroke, 1970, 1(2): 107-111. DOI: 10.1161/01.str.1.2.107.
|
[10] |
Dodson RF, Tagashira Y, Chu LW. Acute ultrastructural changes in the middle cerebral artery due to the injury and ischemia of surgical clamping[J]. Can J Neurol Sci, 1976, 3(1): 23-27. DOI: 10.1017/s0317167100025956.
|
[11] |
Sasaki M, Honmou O, Radtke C, et al. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. Infusion of human mesenchymal stem cells[J]. PLoS One, 2011, 6(10): e26577. DOI: 10.1371/journal.pone.0026577.
|
[12] |
Chen X, Dang G, Dang C, et al. An ischemic stroke model of nonhuman primates for remote lesion studies: a behavioral and neuroimaging investigation[J]. Restor Neurol Neurosci, 2015, 33(2): 131-142. DOI: 10.3233/rnn-140440.
|
[13] |
Ouyang F, Chen X, Chen Y, et al. Neuronal loss without amyloid-β deposits in the thalamus and hippocampus in the late period after middle cerebral artery occlusion in cynomolgus monkeys[J]. Brain Pathol, 2020, 30(1): 165-178. DOI: 10.1111/bpa.12764.
|
[14] |
Chen Y, Liang J, Ouyang F, et al. Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys[J]. Front Neurol, 2019, 10: 661. DOI: 10.3389/fneur.2019.00661.
|
[15] |
Dang G, Chen X, Zhao Y, et al. Alterations in the spinal cord and ventral root after cerebral infarction in non-human primates[J]. Restor Neurol Neurosci, 2018, 36(6): 729-740. DOI: 10.3233/rnn-180854.
|
[16] |
Mori K. Keyhole concept in cerebral aneurysm clipping and tumor removal by the supraciliary lateral supraorbital approach[J]. Asian J Neurosurg, 2014, 9(1): 14-20. DOI: 10.4103/1793-5482.131059.
|
[17] |
Reisch R, Perneczky A. Ten-year experience with the supraorbital subfrontal approach through an eyebrow skin incision[J]. Neurosurgery, 2005, 57(4 Suppl): 242-255; discussion 242-255. DOI: 10.1227/01.neu.0000178353.42777.2c.
|
[18] |
Hopf NJ, Stadie A, Reisch R. Surgical management of bilateral middle cerebral artery aneurysms via a unilateral supraorbital key-hole craniotomy[J]. Minim Invasive Neurosurg, 2009, 52(3): 126-131. DOI: 10.1055/s-0029-1225618.
|
[19] |
Reisch R, Stadie A, Kockro RA, et al. The keyhole concept in neurosurgery[J]. World Neurosurg, 2013, 79(2 Suppl): S17.e19-13. DOI: 10.1016/j.wneu.2012.02.024.
|
[20] |
Chu CY, Xu Q, Rao JH, et al. Microanatomy and operation via pterional approach to make middle cerebral artery occlusion model in cynomolgus monkey[J]. Neurosurg Sci, 2013, 1(1): 25-31. DOI: 10.1166/ns.2013.1004.
|