切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 112 -119. doi: 10.3877/cma.j.issn.2095-123X.2024.02.008

综述

高分辨率核磁共振在颅颈大动脉狭窄介入治疗中的临床应用进展
高振轩1, 谢晨2, 曹绍东3, 甘中伟2, 周倍2, 罗朝川2, 王子齐2, 葛煜彤2, 张伟光2,()   
  1. 1. 100029 北京,中日友好医院神经外科
    2. 150001 哈尔滨,哈尔滨医科大学附属第四医院神经外科
    3. 150001 哈尔滨,哈尔滨医科大学附属第四医院放射科
  • 收稿日期:2023-04-04 出版日期:2024-04-15
  • 通信作者: 张伟光

Progress of clinical application of high-resolution magnetic resonance imaging in craniocervical artery stenosis interventional treatment

Zhenxuan Gao1, Chen Xie2, Shaodong Cao3, Zhongwei Gan2, Bei Zhou2, Chaochuan Luo2, Ziqi Wang2, Yitong Ge2, Weiguang Zhang2,()   

  1. 1. Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
    2. Department of Neurosurgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
    3. Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2023-04-04 Published:2024-04-15
  • Corresponding author: Weiguang Zhang
  • Supported by:
    Scientific and technological innovation talents project of the Fourth Affiliated Hospital of Harbin Medical University(HYDSYCXRC202143)
引用本文:

高振轩, 谢晨, 曹绍东, 甘中伟, 周倍, 罗朝川, 王子齐, 葛煜彤, 张伟光. 高分辨率核磁共振在颅颈大动脉狭窄介入治疗中的临床应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 112-119.

Zhenxuan Gao, Chen Xie, Shaodong Cao, Zhongwei Gan, Bei Zhou, Chaochuan Luo, Ziqi Wang, Yitong Ge, Weiguang Zhang. Progress of clinical application of high-resolution magnetic resonance imaging in craniocervical artery stenosis interventional treatment[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(02): 112-119.

介入治疗是颅颈大动脉狭窄患者预防缺血性脑卒中事件发生的重要手段,精确地评估未来发生脑卒中的风险和预判介入治疗后并发症的发生可以最大限度地使患者获益。高分辨率核磁共振(HR-MRI)具有优越的空间分辨率和无创的特点,被广泛应用于介入诊疗活动中。本文围绕HR-MRI在介入治疗颅颈大动脉狭窄中的应用进展进行综述。

Interventional treatment is one of the most critical approaches to prevent possible ischemic stroke events in patients with craniocervical artery stenosis. Accurately assessing future stroke risk and judging the occurrence of complications after interventional therapy can maximize patients’ benefits. High resolution magnetic resonance imaging (HR-MRI) is widely used in interventional diagnosis and treatment activities due to its superior spatial resolution and non-invasive characteristics. This review aims to summarize the application of HR-MRI in the clinical interventional treatment of large artery stenosis.

表1 斑块成分信号强度
Tab.1 Signal intensities of plaque components
[24]
Perillo T, Paolella C, Perrotta G, et al. Reversible cerebral vasoconstriction syndrome: review of neuroimaging findings[J]. Radiol Med, 2022, 127(9): 981-990. DOI: 10.1007/s11547-022-01532-2.
[25]
Vranic JE, Hartman JB, Mossa-Basha M. High-resolution magnetic resonance vessel wall imaging for the evaluation of intracranial vascular pathology[J]. Neuroimaging Clin N Am, 2021, 31(2): 223-233. DOI: 10.1016/j.nic.2021.01.005.
[26]
Chen CY, Chen SP, Fuh JL, et al. Vascular wall imaging in reversible cerebral vasoconstriction syndrome-a 3-T contrast-enhanced MRI study[J]. J Headache Pain, 2018, 19(1): 74. DOI: 10.1186/s10194-018-0906-7.
[27]
Huang S, Guo ZN, Shi M, et al. Etiology and pathogenesis of moyamoya disease: an update on disease prevalence[J]. Int J Stroke, 2017, 12(3): 246-253. DOI: 10.1177/1747493017694393.
[28]
Ihara M, Yamamoto Y, Hattori Y, et al. Moyamoya disease: diagnosis and interventions[J]. Lancet Neurol, 2022, 21(8): 747-758. DOI: 10.1016/s1474-4422(22)00165-x.
[29]
Brinjikji W, Huston J 3rd, Rabinstein AA, et al. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability[J]. J Neurosurg, 2016, 124(1): 27-42. DOI: 10.3171/2015.1.Jns142452.
[30]
Yu LB, Zhang Q, Shi ZY, et al. High-resolution magnetic resonance imaging of moyamoya disease[J]. Chin Med J (Engl), 2015, 128(23): 3231-3237. DOI: 10.4103/0366-6999.170257.
[31]
Kathuveetil A, Sylaja PN, Senthilvelan S, et al. Vessel wall thickening and enhancement in high-resolution intracranial vessel wall imaging: a predictor of future ischemic events in moyamoya disease[J]. AJNR Am J Neuroradiol, 2020, 41(1): 100-105. DOI: 10.3174/ajnr.A6360.
[32]
Mossa-Basha M, de Havenon A, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort[J]. Stroke, 2016, 47(7): 1782-1788. DOI: 10.1161/strokeaha.116.013320.
[33]
Kamtchum-Tatuene J, Wilman A, Saqqur M, et al. Carotid plaque with high-risk features in embolic stroke of undetermined source: systematic review and meta-analysis[J]. Stroke, 2020, 51(1): 311-314. DOI: 10.1161/strokeaha.119.027272.
[34]
Keyhani S, Cheng EM, Hoggatt K, et al. Comparative effectiveness of carotid stenting to medical therapy among patients with asymptomatic carotid stenosis[J]. Stroke, 2022, 53(4): 1157-1166. DOI: 10.1161/strokeaha.121.036178.
[35]
Reiff T, Eckstein HH, Mansmann U, et al. Carotid endarterectomy or stenting or best medical treatment alone for moderate-to-severe asymptomatic carotid artery stenosis: 5-year results of a multicentre, randomised controlled trial[J]. Lancet Neurol, 2022, 21(10): 877-888. DOI: 10.1016/s1474-4422(22)00290-3.
[36]
Gao P, Wang T, Wang D, et al. Effect of stenting plus medical therapy vs medical therapy alone on risk of stroke and death in patients with symptomatic intracranial stenosis: the CASSISS randomized clinical trial[J]. JAMA, 2022, 328(6): 534-542. DOI: 10.1001/jama.2022.12000.
[37]
Yang WJ, Wong KS, Chen XY. Intracranial atherosclerosis: From microscopy to high-resolution magnetic resonance imaging[J]. J Stroke, 2017, 19(3): 249-260. DOI: 10.5853/jos.2016.01956.
[38]
Cai JM, Hatsukami TS, Ferguson MS, et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging[J]. Circulation, 2002, 106(11): 1368-1373. DOI: 10.1161/01.cir.0000028591.44554.f9.
[39]
Benson JC, Cheek H, Aubry MC, et al. Cervical carotid plaque MRI: review of atherosclerosis imaging features and their histologic underpinnings[J]. Clin Neuroradiol, 2021, 31(2): 295-306. DOI: 10.1007/s00062-020-00987-y.
[40]
Baradaran H, Al-Dasuqi K, Knight-Greenfield A, et al. Association between carotid plaque features on CTA and cerebrovascular ischemia: a systematic review and meta-analysis[J]. AJNR Am J Neuroradiol, 2017, 38(12): 2321-2326. DOI: 10.3174/ajnr.A5436.
[41]
Yang J, Pan X, Zhang B, et al. Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque[J]. Eur Radiol, 2018, 28(12): 4968-4977. DOI: 10.1007/s00330-018-5535-7.
[42]
Paritala PK, Yarlagadda T, Mendieta JB, et al. Plaque longitudinal heterogeneity in morphology, property, and mechanobiology[J]. Cerebrovasc Dis, 2021, 50(5): 510-519. DOI: 10.1159/000515690.
[43]
Saba L, Saam T, Jäger HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurol, 2019, 18(6): 559-572. DOI: 10.1016/s1474-4422(19)30035-3.
[44]
Du H, Yang W, Chen X. Histology-verified intracranial artery calcification and its clinical relevance with cerebrovascular disease[J]. Front Neurol, 2021, 12: 789035. DOI: 10.3389/fneur.2021.789035.
[45]
van den Beukel TC, van der Toorn JE, Vernooij MW, et al. Morphological subtypes of intracranial internal carotid artery arteriosclerosis and the risk of stroke[J]. Stroke, 2022, 53(4): 1339-1347. DOI: 10.1161/strokeaha.121.036213.
[46]
Gong Y, Cao C, Guo Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol, 2021, 31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.
[47]
Schindler A, Schinner R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data[J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406. DOI: 10.1016/j.jcmg.2019.03.028.
[48]
Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis[J]. Stroke, 2013, 44(11): 3071-3077. DOI: 10.1161/strokeaha.113.002551.
[49]
Bischetti S, Scimeca M, Bonanno E, et al. Carotid plaque instability is not related to quantity but to elemental composition of calcification[J]. Nutr Metab Cardiovasc Dis, 2017, 27(9): 768-774. DOI: 10.1016/j.numecd.2017.05.006.
[50]
Zhao X, Hippe DS, Li R, et al. Prevalence and characteristics of carotid artery high-risk atherosclerotic plaques in chinese patients with cerebrovascular symptoms: a chinese atherosclerosis risk evaluation II study[J]. J Am Heart Assoc, 2017, 6(8): e005831. DOI: 10.1161/jaha.117.005831.
[51]
Zhao G, Tang X, Tang H, et al. Recent intraplaque hemorrhage is associated with a higher risk of ipsilateral cerebral embolism during carotid artery stenting[J]. World Neurosurg, 2020, 137: e298-e307. DOI: 10.1016/j.wneu.2020.01.181.
[52]
Qu H, Zhang X, Zhang M, et al. Relationship between carotid plaque characteristics and new ischemic lesions after stenting detected by computed tomography angiography[J]. Acta Radiol, 2020, 61(1): 47-55. DOI: 10.1177/0284185119852732.
[53]
Ito Y, Tsuruta W, Nakai Y, et al. Treatment strategy based on plaque vulnerability and the treatment risk evaluation for internal carotid artery stenosis[J]. Neurol Med Chir (Tokyo), 2018, 58(5): 191-198. DOI: 10.2176/nmc.oa.2017-0228.
[54]
Sakamoto S, Kiura Y, Okazaki T, et al. Carotid artery stenting for vulnerable plaques on MR angiography and ultrasonography: utility of dual protection and blood aspiration method[J]. J Neurointerv Surg, 2016, 8(10): 1011-1015. DOI: 10.1136/neurintsurg-2015-012052.
[55]
国家卫生健康委员会脑卒中防治工程委员会神经影像专业委员会,中华医学会放射学分会神经学组.脑血管病影像规范化应用中国指南[J].中华放射学杂志, 2019, 53(11): 916-940. DOI: 10.3760/cma.j.issn.1005-1201.2019.11.002.
[1]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/s1474-4422(21)00252-0.
[2]
Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the global burden of disease study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. DOI: 10.1016/s2468-2667(21)00228-0.
[3]
中国卒中学会,中国卒中学会神经介入分会,中华预防医学会卒中预防与控制专业委员会介入学组.症状性颅内动脉粥样硬化性狭窄血管内治疗中国专家共识2018[J].中国卒中杂志, 2018, 13(6): 594-604. DOI: 10.3969/j.issn.1673-5765.2018.06.012.
[4]
Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association[J]. Stroke, 2021, 52(7): e364-e467. DOI: 10.1161/str.0000000000000375.
[5]
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II[J]. Circulation, 2003, 108(15): 1772-1778. DOI: 10.1161/01.Cir.0000087481.55887.C9.
[6]
Fabiani I, Palombo C, Caramella D, et al. Imaging of the vulnerable carotid plaque: role of imaging techniques and a research agenda[J]. Neurology, 2020, 94(21): 922-932. DOI: 10.1212/wnl.0000000000009480.
[7]
李树强,赵继泉,杨侃荣,等.高分辨率磁共振成像在动脉粥样硬化斑块中的应用进展[J].海南医学, 2019, 30(12): 1596-1599. DOI: 10.3969/j.issn.1003-6350.2019.12.031.
[8]
李梅芳,许祖梅. HR-MRI脑动脉成像研究进展[J].温州医科大学学报, 2016, 46(9): 699-703. DOI: 10.3969/j.issn.2095-9400.2016.09.020.
[9]
Koktzoglou I, Huang R, Ong AL, et al. High spatial resolution whole-neck MR angiography using thin-slab stack-of-stars quiescent interval slice-selective acquisition[J]. Magn Reson Med, 2020, 84(6): 3316-3324. DOI: 10.1002/mrm.28339.
[10]
Koktzoglou I, Huang R, Ankenbrandt WJ, et al. Super-resolution head and neck MRA using deep machine learning[J]. Magn Reson Med, 2021, 86(1): 335-345. DOI: 10.1002/mrm.28738.
[11]
Zhang X, Cao YZ, Mu XH, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography[J]. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3.
[12]
Yoneyama M, Nakamura M, Takahara T, et al. Improvement of t1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE)[J]. Magn Reson Med Sci, 2014, 13(1): 61-65. DOI: 10.2463/mrms.2013-0047.
[13]
Cogswell PM, Siero JCW, Lants SK, et al. Variable impact of CSF flow suppression on quantitative 3.0t intracranial vessel wall measurements[J]. J Magn Reson Imaging, 2018, 48(4): 1120-1128. DOI: 10.1002/jmri.26028.
[14]
Mossa-Basha M, Shibata DK, Hallam DK, et al. Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies[J]. Stroke, 2017, 48(11): 3026-3033. DOI: 10.1161/strokeaha.117.018227.
[15]
Young CC, Bonow RH, Barros G, et al. Magnetic resonance vessel wall imaging in cerebrovascular diseases[J]. Neurosurg Focus, 2019, 47(6): E4. DOI: 10.3171/2019.9.Focus19599.
[16]
Engelter ST, Lyrer P, Traenka C. Cervical and intracranial artery dissections[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211037238. DOI: 10.1177/17562864211037238.
[56]
Wu F, Song H, Ma Q, et al. Hyperintense plaque on intracranial vessel wall magnetic resonance imaging as a predictor of artery-to-artery embolic infarction[J]. Stroke, 2018, 49(4): 905-911. DOI: 10.1161/strokeaha.117.020046.
[57]
Zhai SJ, Jia L, Kukun HJ, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J]. Am J Transl Res, 2022, 14(1): 664-671.
[58]
Song JW, Pavlou A, Xiao J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis[J]. Stroke, 2021, 52(1): 193-202. DOI: 10.1161/strokeaha.120.031480.
[59]
Compagne KCJ, Clephas PRD, Majoie C, et al. Intracranial carotid artery calcification and effect of endovascular stroke treatment[J]. Stroke, 2018, 49(12): 2961-2968. DOI: 10.1161/strokeaha.118.022400.
[60]
Luo J, Li L, Wang T, et al. Risk factors of new cerebral infarctions after endovascular treatment for basilar artery stenosis based on high-resolution magnetic resonance imaging[J]. Front Neurol, 2020, 11: 620031. DOI: 10.3389/fneur.2020.620031.
[61]
Jiang S, Liu Q, Zhang C, et al. High-resolution vessel wall MRI in assessing postoperative restenosis of intracranial atherosclerotic disease before drug-coated balloon treatment: an outcome prediction study[J]. J Magn Reson Imaging, 2023, 58(1): 69-78. DOI: 10.1002/jmri.28490.
[62]
Yu YN, Li ML, Xu YY, et al. Middle cerebral artery geometric features are associated with plaque distribution and stroke[J]. Neurology, 2018, 91(19): e1760-e1769. DOI: 10.1212/wnl.0000000000006468.
[63]
Sun J, Feng XR, Feng PY, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurol Sci, 2022, 43(9): 5421-5430. DOI: 10.1007/s10072-022-06132-6.
[64]
Sun J, Liu G, Zhang D, et al. The longitudinal distribution and stability of curved basilar artery plaque: a study based on HR-MRI[J]. J Atheroscler Thromb, 2021, 28(12): 1333-1339. DOI: 10.5551/jat.62448.
[65]
Guo R, Zhang X, Zhu X, et al. Morphologic characteristics of severe basilar artery atherosclerotic stenosis on 3D high-resolution MRI[J]. BMC Neurol, 2018, 18(1): 206. DOI: 10.1186/s12883-018-1214-1.
[66]
Bai X, Fu M, Li Z, et al. Distribution and regional variation of wall shear stress in the curved middle cerebral artery using four-dimensional flow magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(12): 5462-5473. DOI: 10.21037/qims-22-67.
[67]
Deng S, Zheng J, Wu Y, et al. Geometrical characteristics associated with atherosclerotic disease in the basilar artery: a magnetic resonance vessel wall imaging study[J]. Quant Imaging Med Surg, 2021, 11(6): 2711-2720. DOI: 10.21037/qims-20-1291.
[68]
Derdeyn CP, Fiorella D, Lynn MJ, et al. Mechanisms of stroke after intracranial angioplasty and stenting in the SAMMPRIS trial[J]. Neurosurgery, 2013, 72(5): 777-795; discussion 795. DOI: 10.1227/NEU.0b013e318286fdc8.
[69]
Jiang WJ, Yu W, Ma N, et al. High resolution MRI guided endovascular intervention of basilar artery disease[J]. J Neurointerv Surg, 2011, 3(4): 375-378. DOI: 10.1136/jnis.2010.004291.
[70]
Dilba K, van Dijk AC, Crombag G, et al. Association between intraplaque hemorrhage and vascular remodeling in carotid arteries: The plaque at RISK (PARISK) study[J]. Cerebrovasc Dis, 2021, 50(1): 94-99. DOI: 10.1159/000511935.
[71]
Kashiwazaki D, Kuwayama N, Akioka N, et al. Carotid plaque with expansive arterial remodeling is a risk factor for ischemic complication following carotid artery stenting[J]. Acta Neurochir (Wien), 2017, 159(7): 1299-1304. DOI: 10.1007/s00701-017-3188-y.
[17]
Zhu XJ, Wang W, Liu ZJ. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chin Med J (Engl), 2016, 129(11): 1363-1370. DOI: 10.4103/0366-6999.182826.
[18]
Wu Q, Liu Y, Duan B, et al. Assessment of morphological features and imaging characteristics of patients with intracranial artery dissection: a high-resolution MRI study[J]. J Integr Neurosci, 2022, 21(6): 157. DOI: 10.31083/j.jin2106157.
[19]
Sui B, Gao P. High-resolution vessel wall magnetic resonance imaging of carotid and intracranial vessels[J]. Acta Radiol, 2019, 60(10): 1329-1340. DOI: 10.1177/0284185119826538.
[20]
Kim JH, Kwak HS, Hwang SB, et al. Differential diagnosis of intraplaque hemorrhage and dissection on high-resolution MR imaging in patients with focal high signal of the vertebrobasilar artery on TOF imaging[J]. Diagnostics (Basel), 2021, 11(6): 1024. DOI: 10.3390/diagnostics11061024.
[21]
Kraemer M, Berlit P. Primary central nervous system vasculitis-an update on diagnosis, differential diagnosis and treatment[J]. J Neurol Sci, 2021, 424: 117422. DOI: 10.1016/j.jns.2021.117422.
[22]
Kang H, Bai X, Zhang Y, et al. Predictors of improvement for patients with CNS vasculitis stenoses: a high-resolution vessel wall mri follow-up study[J]. Eur J Radiol, 2023, 158: 110619. DOI: 10.1016/j.ejrad.2022.110619.
[23]
Burton TM, Bushnell CD. Reversible cerebral vasoconstriction syndrome[J]. Stroke, 2019, 50(8): 2253-2258. DOI: 10.1161/strokeaha.119.024416.
[72]
Lin GH, Song JX, Fu NX, et al. Quantitative and qualitative analysis of atherosclerotic stenosis in the middle cerebral artery using high-resolution magnetic resonance imaging[J]. Can Assoc Radiol J, 2021, 72(4): 783-788. DOI: 10.1177/0846537120961312.
[73]
Ma N, Xu Z, Lyu J, et al. Association of perforator stroke after basilar artery stenting with negative remodeling[J]. Stroke, 2019, 50(3): 745-749. DOI: 10.1161/strokeaha.118.023838.
[74]
Ran Y, Wang Y, Zhu M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: a quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659-662. DOI: 10.1161/strokeaha.119.028405.
[75]
Sun B, Wang L, Li X, et al. Intracranial atherosclerotic plaque characteristics and burden associated with recurrent acute stroke: a 3D quantitative vessel wall MRI study[J]. Front Aging Neurosci, 2021, 13: 706544. DOI: 10.3389/fnagi.2021.706544.
[76]
Roa JA, Zanaty M, Ishii D, et al. Decreased contrast enhancement on high-resolution vessel wall imaging of unruptured intracranial aneurysms in patients taking aspirin[J]. J Neurosurg, 2020, 134(3): 902-908. DOI: 10.3171/2019.12.Jns193023.
[77]
Zheng T, Liu L, Li L, et al. Case report: Advantages of high-resolution MRI in evaluating the efficacy of drug therapy for intracranial atherosclerotic plaques[J]. Front Aging Neurosci, 2022, 14: 804074. DOI: 10.3389/fnagi.2022.804074.
[78]
Wu CH, Chung CP, Chen TY, et al. Influence of angioplasty and stenting on intracranial artery stenosis: preliminary results of high-resolution vessel wall imaging evaluation[J]. Eur Radiol, 2022, 32(10): 6788-6799. DOI: 10.1007/s00330-022-09010-z.
[79]
Wang J, Zhang S, Lu J, et al. High-resolution MR for follow-up of intracranial steno-occlusive disease treated by endovascular treatment[J]. Front Neurol, 2021, 12: 706645. DOI: 10.3389/fneur.2021.706645.
[80]
易竟,姚陵,文江力,等.多模态监测下颈动脉内膜剥脱术治疗颈内动脉重度狭窄[J].中华脑科疾病与康复杂志(电子版), 2022, 12(3): 167-170. DOI: 10.3877/cma.j.issn.2095-123X.2022.03.009.
[81]
王晓东,秦兆为,罗志松,等.抽吸取栓和支架取栓治疗急性缺血性脑卒中的疗效对比分析[J].中华神经创伤外科电子杂志, 2022, 8(2): 81-86. DOI: 10.3877/cma.j.issn.2095-9141.2022.02.004.
[1] 熊震, 阳光辉, 郑小春, 王娜. 支气管镜下联合介入治疗75例良性中央气道狭窄效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 645-649.
[2] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[3] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[4] 潘晓帆, 徐勤义, 陆瑨, 王丹, 刘路路, 董万利. 颅内动脉瘤破裂介入术后并发脑疝的风险因素分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 37-44.
[5] 李旺俊, 王云霞. 抽吸联合支架取栓对超时间窗后循环缺血性脑卒中患者脑血灌注的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 352-357.
[6] 王增龙, 顾梅, 杭宇, 刘圣, 施海彬, 包建英. 急性大血管闭塞性脑卒中患者血管内治疗后吞咽障碍发生的危险因素分析[J]. 中华介入放射学电子杂志, 2024, 12(01): 10-14.
[7] 陈涛, 石红建, 周良, 甘振. 介入治疗胃胆胰术后迟发性出血的临床疗效与安全性[J]. 中华介入放射学电子杂志, 2024, 12(01): 39-44.
[8] 崔皓然, 顾俊鹏, 任伟新. 基于经导管动脉化疗栓塞联合治疗肝癌伴门静脉癌栓的进展[J]. 中华介入放射学电子杂志, 2024, 12(01): 64-69.
[9] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[10] 张德伟, 雷毅, 江哲宇, 王黎洲, 许国辉, 周石. 杂交手术治疗下肢深静脉血栓合并下肢急性动脉血栓一例[J]. 中华介入放射学电子杂志, 2023, 11(04): 380-384.
[11] 钟冬祥, 杨兵. 结构性心脏病介入治疗进展[J]. 中华心脏与心律电子杂志, 2023, 11(04): 247-256.
[12] 郭文娟, 王暖, 曹苇, 王建玉, 管章蒙. 基于行为改变理论和健康信念模式的健康管理对首发缺血性脑卒中的防控研究[J]. 中华卫生应急电子杂志, 2023, 09(06): 348-353.
[13] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
[14] 辛伽伦, 袁兴运, 刘志勤, 师瑞, 蒋锋, 刘锋昌, 李伟旺, 张恒, 郭强, 何剑波, 姚力. 药物洗脱支架在急性大脑中动脉粥样硬化闭塞性卒中患者急诊血管成形术中的临床疗效[J]. 中华脑血管病杂志(电子版), 2023, 17(06): 539-544.
[15] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
阅读次数
全文


摘要