切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 112 -119. doi: 10.3877/cma.j.issn.2095-123X.2024.02.008

综述

高分辨率核磁共振在颅颈大动脉狭窄介入治疗中的临床应用进展
高振轩1, 谢晨2, 曹绍东3, 甘中伟2, 周倍2, 罗朝川2, 王子齐2, 葛煜彤2, 张伟光2,()   
  1. 1. 100029 北京,中日友好医院神经外科
    2. 150001 哈尔滨,哈尔滨医科大学附属第四医院神经外科
    3. 150001 哈尔滨,哈尔滨医科大学附属第四医院放射科
  • 收稿日期:2023-04-04 出版日期:2024-04-15
  • 通信作者: 张伟光

Progress of clinical application of high-resolution magnetic resonance imaging in craniocervical artery stenosis interventional treatment

Zhenxuan Gao1, Chen Xie2, Shaodong Cao3, Zhongwei Gan2, Bei Zhou2, Chaochuan Luo2, Ziqi Wang2, Yitong Ge2, Weiguang Zhang2,()   

  1. 1. Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
    2. Department of Neurosurgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
    3. Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2023-04-04 Published:2024-04-15
  • Corresponding author: Weiguang Zhang
  • Supported by:
    Scientific and technological innovation talents project of the Fourth Affiliated Hospital of Harbin Medical University(HYDSYCXRC202143)
引用本文:

高振轩, 谢晨, 曹绍东, 甘中伟, 周倍, 罗朝川, 王子齐, 葛煜彤, 张伟光. 高分辨率核磁共振在颅颈大动脉狭窄介入治疗中的临床应用进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 112-119.

Zhenxuan Gao, Chen Xie, Shaodong Cao, Zhongwei Gan, Bei Zhou, Chaochuan Luo, Ziqi Wang, Yitong Ge, Weiguang Zhang. Progress of clinical application of high-resolution magnetic resonance imaging in craniocervical artery stenosis interventional treatment[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(02): 112-119.

介入治疗是颅颈大动脉狭窄患者预防缺血性脑卒中事件发生的重要手段,精确地评估未来发生脑卒中的风险和预判介入治疗后并发症的发生可以最大限度地使患者获益。高分辨率核磁共振(HR-MRI)具有优越的空间分辨率和无创的特点,被广泛应用于介入诊疗活动中。本文围绕HR-MRI在介入治疗颅颈大动脉狭窄中的应用进展进行综述。

Interventional treatment is one of the most critical approaches to prevent possible ischemic stroke events in patients with craniocervical artery stenosis. Accurately assessing future stroke risk and judging the occurrence of complications after interventional therapy can maximize patients’ benefits. High resolution magnetic resonance imaging (HR-MRI) is widely used in interventional diagnosis and treatment activities due to its superior spatial resolution and non-invasive characteristics. This review aims to summarize the application of HR-MRI in the clinical interventional treatment of large artery stenosis.

表1 斑块成分信号强度
Tab.1 Signal intensities of plaque components
[24]
Perillo T, Paolella C, Perrotta G, et al. Reversible cerebral vasoconstriction syndrome: review of neuroimaging findings[J]. Radiol Med, 2022, 127(9): 981-990. DOI: 10.1007/s11547-022-01532-2.
[25]
Vranic JE, Hartman JB, Mossa-Basha M. High-resolution magnetic resonance vessel wall imaging for the evaluation of intracranial vascular pathology[J]. Neuroimaging Clin N Am, 2021, 31(2): 223-233. DOI: 10.1016/j.nic.2021.01.005.
[26]
Chen CY, Chen SP, Fuh JL, et al. Vascular wall imaging in reversible cerebral vasoconstriction syndrome-a 3-T contrast-enhanced MRI study[J]. J Headache Pain, 2018, 19(1): 74. DOI: 10.1186/s10194-018-0906-7.
[27]
Huang S, Guo ZN, Shi M, et al. Etiology and pathogenesis of moyamoya disease: an update on disease prevalence[J]. Int J Stroke, 2017, 12(3): 246-253. DOI: 10.1177/1747493017694393.
[28]
Ihara M, Yamamoto Y, Hattori Y, et al. Moyamoya disease: diagnosis and interventions[J]. Lancet Neurol, 2022, 21(8): 747-758. DOI: 10.1016/s1474-4422(22)00165-x.
[29]
Brinjikji W, Huston J 3rd, Rabinstein AA, et al. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability[J]. J Neurosurg, 2016, 124(1): 27-42. DOI: 10.3171/2015.1.Jns142452.
[30]
Yu LB, Zhang Q, Shi ZY, et al. High-resolution magnetic resonance imaging of moyamoya disease[J]. Chin Med J (Engl), 2015, 128(23): 3231-3237. DOI: 10.4103/0366-6999.170257.
[31]
Kathuveetil A, Sylaja PN, Senthilvelan S, et al. Vessel wall thickening and enhancement in high-resolution intracranial vessel wall imaging: a predictor of future ischemic events in moyamoya disease[J]. AJNR Am J Neuroradiol, 2020, 41(1): 100-105. DOI: 10.3174/ajnr.A6360.
[32]
Mossa-Basha M, de Havenon A, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort[J]. Stroke, 2016, 47(7): 1782-1788. DOI: 10.1161/strokeaha.116.013320.
[33]
Kamtchum-Tatuene J, Wilman A, Saqqur M, et al. Carotid plaque with high-risk features in embolic stroke of undetermined source: systematic review and meta-analysis[J]. Stroke, 2020, 51(1): 311-314. DOI: 10.1161/strokeaha.119.027272.
[34]
Keyhani S, Cheng EM, Hoggatt K, et al. Comparative effectiveness of carotid stenting to medical therapy among patients with asymptomatic carotid stenosis[J]. Stroke, 2022, 53(4): 1157-1166. DOI: 10.1161/strokeaha.121.036178.
[35]
Reiff T, Eckstein HH, Mansmann U, et al. Carotid endarterectomy or stenting or best medical treatment alone for moderate-to-severe asymptomatic carotid artery stenosis: 5-year results of a multicentre, randomised controlled trial[J]. Lancet Neurol, 2022, 21(10): 877-888. DOI: 10.1016/s1474-4422(22)00290-3.
[36]
Gao P, Wang T, Wang D, et al. Effect of stenting plus medical therapy vs medical therapy alone on risk of stroke and death in patients with symptomatic intracranial stenosis: the CASSISS randomized clinical trial[J]. JAMA, 2022, 328(6): 534-542. DOI: 10.1001/jama.2022.12000.
[37]
Yang WJ, Wong KS, Chen XY. Intracranial atherosclerosis: From microscopy to high-resolution magnetic resonance imaging[J]. J Stroke, 2017, 19(3): 249-260. DOI: 10.5853/jos.2016.01956.
[38]
Cai JM, Hatsukami TS, Ferguson MS, et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging[J]. Circulation, 2002, 106(11): 1368-1373. DOI: 10.1161/01.cir.0000028591.44554.f9.
[39]
Benson JC, Cheek H, Aubry MC, et al. Cervical carotid plaque MRI: review of atherosclerosis imaging features and their histologic underpinnings[J]. Clin Neuroradiol, 2021, 31(2): 295-306. DOI: 10.1007/s00062-020-00987-y.
[40]
Baradaran H, Al-Dasuqi K, Knight-Greenfield A, et al. Association between carotid plaque features on CTA and cerebrovascular ischemia: a systematic review and meta-analysis[J]. AJNR Am J Neuroradiol, 2017, 38(12): 2321-2326. DOI: 10.3174/ajnr.A5436.
[41]
Yang J, Pan X, Zhang B, et al. Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque[J]. Eur Radiol, 2018, 28(12): 4968-4977. DOI: 10.1007/s00330-018-5535-7.
[42]
Paritala PK, Yarlagadda T, Mendieta JB, et al. Plaque longitudinal heterogeneity in morphology, property, and mechanobiology[J]. Cerebrovasc Dis, 2021, 50(5): 510-519. DOI: 10.1159/000515690.
[43]
Saba L, Saam T, Jäger HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurol, 2019, 18(6): 559-572. DOI: 10.1016/s1474-4422(19)30035-3.
[44]
Du H, Yang W, Chen X. Histology-verified intracranial artery calcification and its clinical relevance with cerebrovascular disease[J]. Front Neurol, 2021, 12: 789035. DOI: 10.3389/fneur.2021.789035.
[45]
van den Beukel TC, van der Toorn JE, Vernooij MW, et al. Morphological subtypes of intracranial internal carotid artery arteriosclerosis and the risk of stroke[J]. Stroke, 2022, 53(4): 1339-1347. DOI: 10.1161/strokeaha.121.036213.
[46]
Gong Y, Cao C, Guo Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol, 2021, 31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.
[47]
Schindler A, Schinner R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data[J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406. DOI: 10.1016/j.jcmg.2019.03.028.
[48]
Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis[J]. Stroke, 2013, 44(11): 3071-3077. DOI: 10.1161/strokeaha.113.002551.
[49]
Bischetti S, Scimeca M, Bonanno E, et al. Carotid plaque instability is not related to quantity but to elemental composition of calcification[J]. Nutr Metab Cardiovasc Dis, 2017, 27(9): 768-774. DOI: 10.1016/j.numecd.2017.05.006.
[50]
Zhao X, Hippe DS, Li R, et al. Prevalence and characteristics of carotid artery high-risk atherosclerotic plaques in chinese patients with cerebrovascular symptoms: a chinese atherosclerosis risk evaluation II study[J]. J Am Heart Assoc, 2017, 6(8): e005831. DOI: 10.1161/jaha.117.005831.
[51]
Zhao G, Tang X, Tang H, et al. Recent intraplaque hemorrhage is associated with a higher risk of ipsilateral cerebral embolism during carotid artery stenting[J]. World Neurosurg, 2020, 137: e298-e307. DOI: 10.1016/j.wneu.2020.01.181.
[52]
Qu H, Zhang X, Zhang M, et al. Relationship between carotid plaque characteristics and new ischemic lesions after stenting detected by computed tomography angiography[J]. Acta Radiol, 2020, 61(1): 47-55. DOI: 10.1177/0284185119852732.
[53]
Ito Y, Tsuruta W, Nakai Y, et al. Treatment strategy based on plaque vulnerability and the treatment risk evaluation for internal carotid artery stenosis[J]. Neurol Med Chir (Tokyo), 2018, 58(5): 191-198. DOI: 10.2176/nmc.oa.2017-0228.
[54]
Sakamoto S, Kiura Y, Okazaki T, et al. Carotid artery stenting for vulnerable plaques on MR angiography and ultrasonography: utility of dual protection and blood aspiration method[J]. J Neurointerv Surg, 2016, 8(10): 1011-1015. DOI: 10.1136/neurintsurg-2015-012052.
[55]
国家卫生健康委员会脑卒中防治工程委员会神经影像专业委员会,中华医学会放射学分会神经学组.脑血管病影像规范化应用中国指南[J].中华放射学杂志, 2019, 53(11): 916-940. DOI: 10.3760/cma.j.issn.1005-1201.2019.11.002.
[1]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/s1474-4422(21)00252-0.
[2]
Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the global burden of disease study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. DOI: 10.1016/s2468-2667(21)00228-0.
[3]
中国卒中学会,中国卒中学会神经介入分会,中华预防医学会卒中预防与控制专业委员会介入学组.症状性颅内动脉粥样硬化性狭窄血管内治疗中国专家共识2018[J].中国卒中杂志, 2018, 13(6): 594-604. DOI: 10.3969/j.issn.1673-5765.2018.06.012.
[4]
Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association[J]. Stroke, 2021, 52(7): e364-e467. DOI: 10.1161/str.0000000000000375.
[5]
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II[J]. Circulation, 2003, 108(15): 1772-1778. DOI: 10.1161/01.Cir.0000087481.55887.C9.
[6]
Fabiani I, Palombo C, Caramella D, et al. Imaging of the vulnerable carotid plaque: role of imaging techniques and a research agenda[J]. Neurology, 2020, 94(21): 922-932. DOI: 10.1212/wnl.0000000000009480.
[7]
李树强,赵继泉,杨侃荣,等.高分辨率磁共振成像在动脉粥样硬化斑块中的应用进展[J].海南医学, 2019, 30(12): 1596-1599. DOI: 10.3969/j.issn.1003-6350.2019.12.031.
[8]
李梅芳,许祖梅. HR-MRI脑动脉成像研究进展[J].温州医科大学学报, 2016, 46(9): 699-703. DOI: 10.3969/j.issn.2095-9400.2016.09.020.
[9]
Koktzoglou I, Huang R, Ong AL, et al. High spatial resolution whole-neck MR angiography using thin-slab stack-of-stars quiescent interval slice-selective acquisition[J]. Magn Reson Med, 2020, 84(6): 3316-3324. DOI: 10.1002/mrm.28339.
[10]
Koktzoglou I, Huang R, Ankenbrandt WJ, et al. Super-resolution head and neck MRA using deep machine learning[J]. Magn Reson Med, 2021, 86(1): 335-345. DOI: 10.1002/mrm.28738.
[11]
Zhang X, Cao YZ, Mu XH, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography[J]. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3.
[12]
Yoneyama M, Nakamura M, Takahara T, et al. Improvement of t1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE)[J]. Magn Reson Med Sci, 2014, 13(1): 61-65. DOI: 10.2463/mrms.2013-0047.
[13]
Cogswell PM, Siero JCW, Lants SK, et al. Variable impact of CSF flow suppression on quantitative 3.0t intracranial vessel wall measurements[J]. J Magn Reson Imaging, 2018, 48(4): 1120-1128. DOI: 10.1002/jmri.26028.
[14]
Mossa-Basha M, Shibata DK, Hallam DK, et al. Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies[J]. Stroke, 2017, 48(11): 3026-3033. DOI: 10.1161/strokeaha.117.018227.
[15]
Young CC, Bonow RH, Barros G, et al. Magnetic resonance vessel wall imaging in cerebrovascular diseases[J]. Neurosurg Focus, 2019, 47(6): E4. DOI: 10.3171/2019.9.Focus19599.
[16]
Engelter ST, Lyrer P, Traenka C. Cervical and intracranial artery dissections[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211037238. DOI: 10.1177/17562864211037238.
[56]
Wu F, Song H, Ma Q, et al. Hyperintense plaque on intracranial vessel wall magnetic resonance imaging as a predictor of artery-to-artery embolic infarction[J]. Stroke, 2018, 49(4): 905-911. DOI: 10.1161/strokeaha.117.020046.
[57]
Zhai SJ, Jia L, Kukun HJ, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J]. Am J Transl Res, 2022, 14(1): 664-671.
[58]
Song JW, Pavlou A, Xiao J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis[J]. Stroke, 2021, 52(1): 193-202. DOI: 10.1161/strokeaha.120.031480.
[59]
Compagne KCJ, Clephas PRD, Majoie C, et al. Intracranial carotid artery calcification and effect of endovascular stroke treatment[J]. Stroke, 2018, 49(12): 2961-2968. DOI: 10.1161/strokeaha.118.022400.
[60]
Luo J, Li L, Wang T, et al. Risk factors of new cerebral infarctions after endovascular treatment for basilar artery stenosis based on high-resolution magnetic resonance imaging[J]. Front Neurol, 2020, 11: 620031. DOI: 10.3389/fneur.2020.620031.
[61]
Jiang S, Liu Q, Zhang C, et al. High-resolution vessel wall MRI in assessing postoperative restenosis of intracranial atherosclerotic disease before drug-coated balloon treatment: an outcome prediction study[J]. J Magn Reson Imaging, 2023, 58(1): 69-78. DOI: 10.1002/jmri.28490.
[62]
Yu YN, Li ML, Xu YY, et al. Middle cerebral artery geometric features are associated with plaque distribution and stroke[J]. Neurology, 2018, 91(19): e1760-e1769. DOI: 10.1212/wnl.0000000000006468.
[63]
Sun J, Feng XR, Feng PY, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurol Sci, 2022, 43(9): 5421-5430. DOI: 10.1007/s10072-022-06132-6.
[64]
Sun J, Liu G, Zhang D, et al. The longitudinal distribution and stability of curved basilar artery plaque: a study based on HR-MRI[J]. J Atheroscler Thromb, 2021, 28(12): 1333-1339. DOI: 10.5551/jat.62448.
[65]
Guo R, Zhang X, Zhu X, et al. Morphologic characteristics of severe basilar artery atherosclerotic stenosis on 3D high-resolution MRI[J]. BMC Neurol, 2018, 18(1): 206. DOI: 10.1186/s12883-018-1214-1.
[66]
Bai X, Fu M, Li Z, et al. Distribution and regional variation of wall shear stress in the curved middle cerebral artery using four-dimensional flow magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(12): 5462-5473. DOI: 10.21037/qims-22-67.
[67]
Deng S, Zheng J, Wu Y, et al. Geometrical characteristics associated with atherosclerotic disease in the basilar artery: a magnetic resonance vessel wall imaging study[J]. Quant Imaging Med Surg, 2021, 11(6): 2711-2720. DOI: 10.21037/qims-20-1291.
[68]
Derdeyn CP, Fiorella D, Lynn MJ, et al. Mechanisms of stroke after intracranial angioplasty and stenting in the SAMMPRIS trial[J]. Neurosurgery, 2013, 72(5): 777-795; discussion 795. DOI: 10.1227/NEU.0b013e318286fdc8.
[69]
Jiang WJ, Yu W, Ma N, et al. High resolution MRI guided endovascular intervention of basilar artery disease[J]. J Neurointerv Surg, 2011, 3(4): 375-378. DOI: 10.1136/jnis.2010.004291.
[70]
Dilba K, van Dijk AC, Crombag G, et al. Association between intraplaque hemorrhage and vascular remodeling in carotid arteries: The plaque at RISK (PARISK) study[J]. Cerebrovasc Dis, 2021, 50(1): 94-99. DOI: 10.1159/000511935.
[71]
Kashiwazaki D, Kuwayama N, Akioka N, et al. Carotid plaque with expansive arterial remodeling is a risk factor for ischemic complication following carotid artery stenting[J]. Acta Neurochir (Wien), 2017, 159(7): 1299-1304. DOI: 10.1007/s00701-017-3188-y.
[17]
Zhu XJ, Wang W, Liu ZJ. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chin Med J (Engl), 2016, 129(11): 1363-1370. DOI: 10.4103/0366-6999.182826.
[18]
Wu Q, Liu Y, Duan B, et al. Assessment of morphological features and imaging characteristics of patients with intracranial artery dissection: a high-resolution MRI study[J]. J Integr Neurosci, 2022, 21(6): 157. DOI: 10.31083/j.jin2106157.
[19]
Sui B, Gao P. High-resolution vessel wall magnetic resonance imaging of carotid and intracranial vessels[J]. Acta Radiol, 2019, 60(10): 1329-1340. DOI: 10.1177/0284185119826538.
[20]
Kim JH, Kwak HS, Hwang SB, et al. Differential diagnosis of intraplaque hemorrhage and dissection on high-resolution MR imaging in patients with focal high signal of the vertebrobasilar artery on TOF imaging[J]. Diagnostics (Basel), 2021, 11(6): 1024. DOI: 10.3390/diagnostics11061024.
[21]
Kraemer M, Berlit P. Primary central nervous system vasculitis-an update on diagnosis, differential diagnosis and treatment[J]. J Neurol Sci, 2021, 424: 117422. DOI: 10.1016/j.jns.2021.117422.
[22]
Kang H, Bai X, Zhang Y, et al. Predictors of improvement for patients with CNS vasculitis stenoses: a high-resolution vessel wall mri follow-up study[J]. Eur J Radiol, 2023, 158: 110619. DOI: 10.1016/j.ejrad.2022.110619.
[23]
Burton TM, Bushnell CD. Reversible cerebral vasoconstriction syndrome[J]. Stroke, 2019, 50(8): 2253-2258. DOI: 10.1161/strokeaha.119.024416.
[72]
Lin GH, Song JX, Fu NX, et al. Quantitative and qualitative analysis of atherosclerotic stenosis in the middle cerebral artery using high-resolution magnetic resonance imaging[J]. Can Assoc Radiol J, 2021, 72(4): 783-788. DOI: 10.1177/0846537120961312.
[73]
Ma N, Xu Z, Lyu J, et al. Association of perforator stroke after basilar artery stenting with negative remodeling[J]. Stroke, 2019, 50(3): 745-749. DOI: 10.1161/strokeaha.118.023838.
[74]
Ran Y, Wang Y, Zhu M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: a quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659-662. DOI: 10.1161/strokeaha.119.028405.
[75]
Sun B, Wang L, Li X, et al. Intracranial atherosclerotic plaque characteristics and burden associated with recurrent acute stroke: a 3D quantitative vessel wall MRI study[J]. Front Aging Neurosci, 2021, 13: 706544. DOI: 10.3389/fnagi.2021.706544.
[76]
Roa JA, Zanaty M, Ishii D, et al. Decreased contrast enhancement on high-resolution vessel wall imaging of unruptured intracranial aneurysms in patients taking aspirin[J]. J Neurosurg, 2020, 134(3): 902-908. DOI: 10.3171/2019.12.Jns193023.
[77]
Zheng T, Liu L, Li L, et al. Case report: Advantages of high-resolution MRI in evaluating the efficacy of drug therapy for intracranial atherosclerotic plaques[J]. Front Aging Neurosci, 2022, 14: 804074. DOI: 10.3389/fnagi.2022.804074.
[78]
Wu CH, Chung CP, Chen TY, et al. Influence of angioplasty and stenting on intracranial artery stenosis: preliminary results of high-resolution vessel wall imaging evaluation[J]. Eur Radiol, 2022, 32(10): 6788-6799. DOI: 10.1007/s00330-022-09010-z.
[79]
Wang J, Zhang S, Lu J, et al. High-resolution MR for follow-up of intracranial steno-occlusive disease treated by endovascular treatment[J]. Front Neurol, 2021, 12: 706645. DOI: 10.3389/fneur.2021.706645.
[80]
易竟,姚陵,文江力,等.多模态监测下颈动脉内膜剥脱术治疗颈内动脉重度狭窄[J].中华脑科疾病与康复杂志(电子版), 2022, 12(3): 167-170. DOI: 10.3877/cma.j.issn.2095-123X.2022.03.009.
[81]
王晓东,秦兆为,罗志松,等.抽吸取栓和支架取栓治疗急性缺血性脑卒中的疗效对比分析[J].中华神经创伤外科电子杂志, 2022, 8(2): 81-86. DOI: 10.3877/cma.j.issn.2095-9141.2022.02.004.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 王友芳, 李兴超, 刘清敏, 刘德彬, 刘松伍, 郭冬冬, 车峰远. 应激性高血糖指数对经皮冠状动脉介入术后急性心肌梗死患者发生主要不良心脑血管事件的预测价值[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 124-129.
[3] 吴俊嶺, 孟科, 刘江涛, 孙刚. 基于HVPG分层的门脉高压内镜治疗中远期疗效研究[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(02): 100-105.
[4] 邢颖, 程石. 巨脾外科治疗现状与介入治疗序贯手术策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 253-258.
[5] 唐必英, 李钢. 治疗时机对动脉瘤性蛛网膜下腔出血患者预后的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 213-219.
[6] 杨金朔, 吴桥伟, 王春雷, 史怀璋. 脑血管内支架成形术后再狭窄的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 174-179.
[7] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[8] 牟超鹏, 宗斌, 刘奕, 史美英, 徐杜娟, 冯春光. 经远端桡动脉与经常规桡动脉行急诊冠脉介入诊疗后穿刺部位血肿的对比[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 275-282.
[9] 陈芳, 王建英, 曹建用, 刘丽, 罗晓琴. 基于分析-设计-开发-实施-评价模式的叙事护理培训在产科预防性介入治疗中的应用[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 392-396.
[10] 尹晓晴, 赵子萱, 杨帆, 敖峰, 林勇. D型人格与前循环急性缺血性脑卒中患者预后的相关性[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 206-211.
[11] 李超迪, 刘娟芳, 闫肃, 秦胜东, 张镐哲, 常琼方, 韩新巍, 张建好. 血管性介入治疗在宫颈癌大出血患者中的临床疗效[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 217-220.
[12] 周宝林, 刘曦, 谌浩, 王金, 马雪琴. 温敏水凝胶在血管内栓塞治疗中的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 244-249.
[13] 单兴华, 唐文栋, 赵仙先. 延伸导管在室间隔穿孔介入治疗的新应用一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 126-128.
[14] 张长东, 李庚, 钟禹成, 田军, 尚小珂, 董念国. 2023年先天性心脏病介入治疗年度报告[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 72-78.
[15] 周洪千, 张煜坤, 顾天舒, 胡苏涛, 姜超, 张雪, 张昊, 陶华岳, 刘行, 刘彤, 陈康寅. 既往出血性脑卒中患者行经皮冠脉介入治疗后不良事件的危险因素分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 323-329.
阅读次数
全文


摘要