[24] |
Perillo T, Paolella C, Perrotta G, et al. Reversible cerebral vasoconstriction syndrome: review of neuroimaging findings[J]. Radiol Med, 2022, 127(9): 981-990. DOI: 10.1007/s11547-022-01532-2.
|
[25] |
Vranic JE, Hartman JB, Mossa-Basha M. High-resolution magnetic resonance vessel wall imaging for the evaluation of intracranial vascular pathology[J]. Neuroimaging Clin N Am, 2021, 31(2): 223-233. DOI: 10.1016/j.nic.2021.01.005.
|
[26] |
Chen CY, Chen SP, Fuh JL, et al. Vascular wall imaging in reversible cerebral vasoconstriction syndrome-a 3-T contrast-enhanced MRI study[J]. J Headache Pain, 2018, 19(1): 74. DOI: 10.1186/s10194-018-0906-7.
|
[27] |
Huang S, Guo ZN, Shi M, et al. Etiology and pathogenesis of moyamoya disease: an update on disease prevalence[J]. Int J Stroke, 2017, 12(3): 246-253. DOI: 10.1177/1747493017694393.
|
[28] |
Ihara M, Yamamoto Y, Hattori Y, et al. Moyamoya disease: diagnosis and interventions[J]. Lancet Neurol, 2022, 21(8): 747-758. DOI: 10.1016/s1474-4422(22)00165-x.
|
[29] |
Brinjikji W, Huston J 3rd, Rabinstein AA, et al. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability[J]. J Neurosurg, 2016, 124(1): 27-42. DOI: 10.3171/2015.1.Jns142452.
|
[30] |
Yu LB, Zhang Q, Shi ZY, et al. High-resolution magnetic resonance imaging of moyamoya disease[J]. Chin Med J (Engl), 2015, 128(23): 3231-3237. DOI: 10.4103/0366-6999.170257.
|
[31] |
Kathuveetil A, Sylaja PN, Senthilvelan S, et al. Vessel wall thickening and enhancement in high-resolution intracranial vessel wall imaging: a predictor of future ischemic events in moyamoya disease[J]. AJNR Am J Neuroradiol, 2020, 41(1): 100-105. DOI: 10.3174/ajnr.A6360.
|
[32] |
Mossa-Basha M, de Havenon A, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort[J]. Stroke, 2016, 47(7): 1782-1788. DOI: 10.1161/strokeaha.116.013320.
|
[33] |
Kamtchum-Tatuene J, Wilman A, Saqqur M, et al. Carotid plaque with high-risk features in embolic stroke of undetermined source: systematic review and meta-analysis[J]. Stroke, 2020, 51(1): 311-314. DOI: 10.1161/strokeaha.119.027272.
|
[34] |
Keyhani S, Cheng EM, Hoggatt K, et al. Comparative effectiveness of carotid stenting to medical therapy among patients with asymptomatic carotid stenosis[J]. Stroke, 2022, 53(4): 1157-1166. DOI: 10.1161/strokeaha.121.036178.
|
[35] |
Reiff T, Eckstein HH, Mansmann U, et al. Carotid endarterectomy or stenting or best medical treatment alone for moderate-to-severe asymptomatic carotid artery stenosis: 5-year results of a multicentre, randomised controlled trial[J]. Lancet Neurol, 2022, 21(10): 877-888. DOI: 10.1016/s1474-4422(22)00290-3.
|
[36] |
Gao P, Wang T, Wang D, et al. Effect of stenting plus medical therapy vs medical therapy alone on risk of stroke and death in patients with symptomatic intracranial stenosis: the CASSISS randomized clinical trial[J]. JAMA, 2022, 328(6): 534-542. DOI: 10.1001/jama.2022.12000.
|
[37] |
Yang WJ, Wong KS, Chen XY. Intracranial atherosclerosis: From microscopy to high-resolution magnetic resonance imaging[J]. J Stroke, 2017, 19(3): 249-260. DOI: 10.5853/jos.2016.01956.
|
[38] |
Cai JM, Hatsukami TS, Ferguson MS, et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging[J]. Circulation, 2002, 106(11): 1368-1373. DOI: 10.1161/01.cir.0000028591.44554.f9.
|
[39] |
Benson JC, Cheek H, Aubry MC, et al. Cervical carotid plaque MRI: review of atherosclerosis imaging features and their histologic underpinnings[J]. Clin Neuroradiol, 2021, 31(2): 295-306. DOI: 10.1007/s00062-020-00987-y.
|
[40] |
Baradaran H, Al-Dasuqi K, Knight-Greenfield A, et al. Association between carotid plaque features on CTA and cerebrovascular ischemia: a systematic review and meta-analysis[J]. AJNR Am J Neuroradiol, 2017, 38(12): 2321-2326. DOI: 10.3174/ajnr.A5436.
|
[41] |
Yang J, Pan X, Zhang B, et al. Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque[J]. Eur Radiol, 2018, 28(12): 4968-4977. DOI: 10.1007/s00330-018-5535-7.
|
[42] |
Paritala PK, Yarlagadda T, Mendieta JB, et al. Plaque longitudinal heterogeneity in morphology, property, and mechanobiology[J]. Cerebrovasc Dis, 2021, 50(5): 510-519. DOI: 10.1159/000515690.
|
[43] |
Saba L, Saam T, Jäger HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurol, 2019, 18(6): 559-572. DOI: 10.1016/s1474-4422(19)30035-3.
|
[44] |
Du H, Yang W, Chen X. Histology-verified intracranial artery calcification and its clinical relevance with cerebrovascular disease[J]. Front Neurol, 2021, 12: 789035. DOI: 10.3389/fneur.2021.789035.
|
[45] |
van den Beukel TC, van der Toorn JE, Vernooij MW, et al. Morphological subtypes of intracranial internal carotid artery arteriosclerosis and the risk of stroke[J]. Stroke, 2022, 53(4): 1339-1347. DOI: 10.1161/strokeaha.121.036213.
|
[46] |
Gong Y, Cao C, Guo Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol, 2021, 31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.
|
[47] |
Schindler A, Schinner R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: meta-analysis of individual patient data[J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406. DOI: 10.1016/j.jcmg.2019.03.028.
|
[48] |
Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis[J]. Stroke, 2013, 44(11): 3071-3077. DOI: 10.1161/strokeaha.113.002551.
|
[49] |
Bischetti S, Scimeca M, Bonanno E, et al. Carotid plaque instability is not related to quantity but to elemental composition of calcification[J]. Nutr Metab Cardiovasc Dis, 2017, 27(9): 768-774. DOI: 10.1016/j.numecd.2017.05.006.
|
[50] |
Zhao X, Hippe DS, Li R, et al. Prevalence and characteristics of carotid artery high-risk atherosclerotic plaques in chinese patients with cerebrovascular symptoms: a chinese atherosclerosis risk evaluation II study[J]. J Am Heart Assoc, 2017, 6(8): e005831. DOI: 10.1161/jaha.117.005831.
|
[51] |
Zhao G, Tang X, Tang H, et al. Recent intraplaque hemorrhage is associated with a higher risk of ipsilateral cerebral embolism during carotid artery stenting[J]. World Neurosurg, 2020, 137: e298-e307. DOI: 10.1016/j.wneu.2020.01.181.
|
[52] |
Qu H, Zhang X, Zhang M, et al. Relationship between carotid plaque characteristics and new ischemic lesions after stenting detected by computed tomography angiography[J]. Acta Radiol, 2020, 61(1): 47-55. DOI: 10.1177/0284185119852732.
|
[53] |
Ito Y, Tsuruta W, Nakai Y, et al. Treatment strategy based on plaque vulnerability and the treatment risk evaluation for internal carotid artery stenosis[J]. Neurol Med Chir (Tokyo), 2018, 58(5): 191-198. DOI: 10.2176/nmc.oa.2017-0228.
|
[54] |
Sakamoto S, Kiura Y, Okazaki T, et al. Carotid artery stenting for vulnerable plaques on MR angiography and ultrasonography: utility of dual protection and blood aspiration method[J]. J Neurointerv Surg, 2016, 8(10): 1011-1015. DOI: 10.1136/neurintsurg-2015-012052.
|
[55] |
|
[1] |
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/s1474-4422(21)00252-0.
|
[2] |
Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the global burden of disease study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. DOI: 10.1016/s2468-2667(21)00228-0.
|
[3] |
|
[4] |
Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association[J]. Stroke, 2021, 52(7): e364-e467. DOI: 10.1161/str.0000000000000375.
|
[5] |
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II[J]. Circulation, 2003, 108(15): 1772-1778. DOI: 10.1161/01.Cir.0000087481.55887.C9.
|
[6] |
Fabiani I, Palombo C, Caramella D, et al. Imaging of the vulnerable carotid plaque: role of imaging techniques and a research agenda[J]. Neurology, 2020, 94(21): 922-932. DOI: 10.1212/wnl.0000000000009480.
|
[7] |
|
[8] |
|
[9] |
Koktzoglou I, Huang R, Ong AL, et al. High spatial resolution whole-neck MR angiography using thin-slab stack-of-stars quiescent interval slice-selective acquisition[J]. Magn Reson Med, 2020, 84(6): 3316-3324. DOI: 10.1002/mrm.28339.
|
[10] |
Koktzoglou I, Huang R, Ankenbrandt WJ, et al. Super-resolution head and neck MRA using deep machine learning[J]. Magn Reson Med, 2021, 86(1): 335-345. DOI: 10.1002/mrm.28738.
|
[11] |
Zhang X, Cao YZ, Mu XH, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography[J]. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3.
|
[12] |
Yoneyama M, Nakamura M, Takahara T, et al. Improvement of t1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE)[J]. Magn Reson Med Sci, 2014, 13(1): 61-65. DOI: 10.2463/mrms.2013-0047.
|
[13] |
Cogswell PM, Siero JCW, Lants SK, et al. Variable impact of CSF flow suppression on quantitative 3.0t intracranial vessel wall measurements[J]. J Magn Reson Imaging, 2018, 48(4): 1120-1128. DOI: 10.1002/jmri.26028.
|
[14] |
Mossa-Basha M, Shibata DK, Hallam DK, et al. Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies[J]. Stroke, 2017, 48(11): 3026-3033. DOI: 10.1161/strokeaha.117.018227.
|
[15] |
Young CC, Bonow RH, Barros G, et al. Magnetic resonance vessel wall imaging in cerebrovascular diseases[J]. Neurosurg Focus, 2019, 47(6): E4. DOI: 10.3171/2019.9.Focus19599.
|
[16] |
Engelter ST, Lyrer P, Traenka C. Cervical and intracranial artery dissections[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211037238. DOI: 10.1177/17562864211037238.
|
[56] |
Wu F, Song H, Ma Q, et al. Hyperintense plaque on intracranial vessel wall magnetic resonance imaging as a predictor of artery-to-artery embolic infarction[J]. Stroke, 2018, 49(4): 905-911. DOI: 10.1161/strokeaha.117.020046.
|
[57] |
Zhai SJ, Jia L, Kukun HJ, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J]. Am J Transl Res, 2022, 14(1): 664-671.
|
[58] |
Song JW, Pavlou A, Xiao J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis[J]. Stroke, 2021, 52(1): 193-202. DOI: 10.1161/strokeaha.120.031480.
|
[59] |
Compagne KCJ, Clephas PRD, Majoie C, et al. Intracranial carotid artery calcification and effect of endovascular stroke treatment[J]. Stroke, 2018, 49(12): 2961-2968. DOI: 10.1161/strokeaha.118.022400.
|
[60] |
Luo J, Li L, Wang T, et al. Risk factors of new cerebral infarctions after endovascular treatment for basilar artery stenosis based on high-resolution magnetic resonance imaging[J]. Front Neurol, 2020, 11: 620031. DOI: 10.3389/fneur.2020.620031.
|
[61] |
Jiang S, Liu Q, Zhang C, et al. High-resolution vessel wall MRI in assessing postoperative restenosis of intracranial atherosclerotic disease before drug-coated balloon treatment: an outcome prediction study[J]. J Magn Reson Imaging, 2023, 58(1): 69-78. DOI: 10.1002/jmri.28490.
|
[62] |
Yu YN, Li ML, Xu YY, et al. Middle cerebral artery geometric features are associated with plaque distribution and stroke[J]. Neurology, 2018, 91(19): e1760-e1769. DOI: 10.1212/wnl.0000000000006468.
|
[63] |
Sun J, Feng XR, Feng PY, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurol Sci, 2022, 43(9): 5421-5430. DOI: 10.1007/s10072-022-06132-6.
|
[64] |
Sun J, Liu G, Zhang D, et al. The longitudinal distribution and stability of curved basilar artery plaque: a study based on HR-MRI[J]. J Atheroscler Thromb, 2021, 28(12): 1333-1339. DOI: 10.5551/jat.62448.
|
[65] |
Guo R, Zhang X, Zhu X, et al. Morphologic characteristics of severe basilar artery atherosclerotic stenosis on 3D high-resolution MRI[J]. BMC Neurol, 2018, 18(1): 206. DOI: 10.1186/s12883-018-1214-1.
|
[66] |
Bai X, Fu M, Li Z, et al. Distribution and regional variation of wall shear stress in the curved middle cerebral artery using four-dimensional flow magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(12): 5462-5473. DOI: 10.21037/qims-22-67.
|
[67] |
Deng S, Zheng J, Wu Y, et al. Geometrical characteristics associated with atherosclerotic disease in the basilar artery: a magnetic resonance vessel wall imaging study[J]. Quant Imaging Med Surg, 2021, 11(6): 2711-2720. DOI: 10.21037/qims-20-1291.
|
[68] |
Derdeyn CP, Fiorella D, Lynn MJ, et al. Mechanisms of stroke after intracranial angioplasty and stenting in the SAMMPRIS trial[J]. Neurosurgery, 2013, 72(5): 777-795; discussion 795. DOI: 10.1227/NEU.0b013e318286fdc8.
|
[69] |
Jiang WJ, Yu W, Ma N, et al. High resolution MRI guided endovascular intervention of basilar artery disease[J]. J Neurointerv Surg, 2011, 3(4): 375-378. DOI: 10.1136/jnis.2010.004291.
|
[70] |
Dilba K, van Dijk AC, Crombag G, et al. Association between intraplaque hemorrhage and vascular remodeling in carotid arteries: The plaque at RISK (PARISK) study[J]. Cerebrovasc Dis, 2021, 50(1): 94-99. DOI: 10.1159/000511935.
|
[71] |
Kashiwazaki D, Kuwayama N, Akioka N, et al. Carotid plaque with expansive arterial remodeling is a risk factor for ischemic complication following carotid artery stenting[J]. Acta Neurochir (Wien), 2017, 159(7): 1299-1304. DOI: 10.1007/s00701-017-3188-y.
|
[17] |
Zhu XJ, Wang W, Liu ZJ. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chin Med J (Engl), 2016, 129(11): 1363-1370. DOI: 10.4103/0366-6999.182826.
|
[18] |
Wu Q, Liu Y, Duan B, et al. Assessment of morphological features and imaging characteristics of patients with intracranial artery dissection: a high-resolution MRI study[J]. J Integr Neurosci, 2022, 21(6): 157. DOI: 10.31083/j.jin2106157.
|
[19] |
Sui B, Gao P. High-resolution vessel wall magnetic resonance imaging of carotid and intracranial vessels[J]. Acta Radiol, 2019, 60(10): 1329-1340. DOI: 10.1177/0284185119826538.
|
[20] |
Kim JH, Kwak HS, Hwang SB, et al. Differential diagnosis of intraplaque hemorrhage and dissection on high-resolution MR imaging in patients with focal high signal of the vertebrobasilar artery on TOF imaging[J]. Diagnostics (Basel), 2021, 11(6): 1024. DOI: 10.3390/diagnostics11061024.
|
[21] |
Kraemer M, Berlit P. Primary central nervous system vasculitis-an update on diagnosis, differential diagnosis and treatment[J]. J Neurol Sci, 2021, 424: 117422. DOI: 10.1016/j.jns.2021.117422.
|
[22] |
Kang H, Bai X, Zhang Y, et al. Predictors of improvement for patients with CNS vasculitis stenoses: a high-resolution vessel wall mri follow-up study[J]. Eur J Radiol, 2023, 158: 110619. DOI: 10.1016/j.ejrad.2022.110619.
|
[23] |
Burton TM, Bushnell CD. Reversible cerebral vasoconstriction syndrome[J]. Stroke, 2019, 50(8): 2253-2258. DOI: 10.1161/strokeaha.119.024416.
|
[72] |
Lin GH, Song JX, Fu NX, et al. Quantitative and qualitative analysis of atherosclerotic stenosis in the middle cerebral artery using high-resolution magnetic resonance imaging[J]. Can Assoc Radiol J, 2021, 72(4): 783-788. DOI: 10.1177/0846537120961312.
|
[73] |
Ma N, Xu Z, Lyu J, et al. Association of perforator stroke after basilar artery stenting with negative remodeling[J]. Stroke, 2019, 50(3): 745-749. DOI: 10.1161/strokeaha.118.023838.
|
[74] |
Ran Y, Wang Y, Zhu M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: a quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659-662. DOI: 10.1161/strokeaha.119.028405.
|
[75] |
Sun B, Wang L, Li X, et al. Intracranial atherosclerotic plaque characteristics and burden associated with recurrent acute stroke: a 3D quantitative vessel wall MRI study[J]. Front Aging Neurosci, 2021, 13: 706544. DOI: 10.3389/fnagi.2021.706544.
|
[76] |
Roa JA, Zanaty M, Ishii D, et al. Decreased contrast enhancement on high-resolution vessel wall imaging of unruptured intracranial aneurysms in patients taking aspirin[J]. J Neurosurg, 2020, 134(3): 902-908. DOI: 10.3171/2019.12.Jns193023.
|
[77] |
Zheng T, Liu L, Li L, et al. Case report: Advantages of high-resolution MRI in evaluating the efficacy of drug therapy for intracranial atherosclerotic plaques[J]. Front Aging Neurosci, 2022, 14: 804074. DOI: 10.3389/fnagi.2022.804074.
|
[78] |
Wu CH, Chung CP, Chen TY, et al. Influence of angioplasty and stenting on intracranial artery stenosis: preliminary results of high-resolution vessel wall imaging evaluation[J]. Eur Radiol, 2022, 32(10): 6788-6799. DOI: 10.1007/s00330-022-09010-z.
|
[79] |
Wang J, Zhang S, Lu J, et al. High-resolution MR for follow-up of intracranial steno-occlusive disease treated by endovascular treatment[J]. Front Neurol, 2021, 12: 706645. DOI: 10.3389/fneur.2021.706645.
|
[80] |
|
[81] |
|