切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (02) : 65 -71. doi: 10.3877/cma.j.issn.2095-123X.2025.02.001

述评

脊髓电刺激治疗中枢性瘫痪
张黎1,(), 高振轩1   
  1. 1. 100029 北京,中日友好医院神经外科
  • 收稿日期:2024-05-27 出版日期:2025-04-15
  • 通信作者: 张黎
  • 基金资助:
    国家重点研发计划(2022YFC2402500)国家自然科学基金(8197141160)北京市自然科学基金-昌平创新联合基金项目(L244029)中央高水平医院临床科研业务费资助(2022-NHLHCRF-YS-05)

Spinal cord stimulation for the treatment of central paralysis

Li Zhang1,(), Zhenxuan Gao1   

  1. 1. Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
  • Received:2024-05-27 Published:2025-04-15
  • Corresponding author: Li Zhang
引用本文:

张黎, 高振轩. 脊髓电刺激治疗中枢性瘫痪[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 65-71.

Li Zhang, Zhenxuan Gao. Spinal cord stimulation for the treatment of central paralysis[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(02): 65-71.

中枢性瘫痪由大脑或脊髓运动传导通路受损引起,以卒中、脊髓损伤为主要病因,常导致肢体运动障碍、痉挛及感觉功能异常,严重影响患者的生活质量,带来了沉重的社会负担。近年来,神经调控技术,如脊髓电刺激(SCS),因其微创、可逆等优势成为其治疗研究热点。SCS通过硬膜外电极向脊髓背侧发送电脉冲,从而降低肌张力、缓解痉挛与疼痛、促进运动功能恢复,作用机制包括调节神经可塑性、感觉传入、脊髓运动神经元兴奋性及神经递质释放等。相较于传统外科手术及其他神经调控技术,SCS具有非破坏性、作用直接、适用范围广(可能改善意识、二便障碍等)的优势。未来SCS将结合多通道电极、智能算法、闭环调控及机器人辅助康复等技术,提升其精准性与疗效,成为神经康复核心技术之一。本文围绕SCS治疗中枢性瘫痪的现状、手术适应证与禁忌证、手术方法、术后管理及疗效进行述评。

Central paralysis is caused by damage to motor conduction pathways in the brain or spinal cord, most commonly due to stroke or spinal cord injury. It often results in motor dysfunction,spasticity, and sensory abnormalities, severely impairing patients' quality of life and imposing a substantial societal burden. In recent years, neuromodulation techniques, particularly spinal cord stimulation (SCS), have attracted increasing attention due to their minimally invasive and reversible nature. SCS delivers electrical pulses to the dorsal spinal cord via epidural electrodes, thereby reducing muscle tone, alleviating spasticity and pain, and promoting motor recovery. Its therapeutic mechanisms involve modulation of neural plasticity, sensory afferent input, excitability of spinal motor neurons, and neurotransmitter release. Compared with traditional surgery and other neuromodulation approaches, SCS offers non-destructive, direct action with a wide range of potential benefits, including improvements in consciousness and autonomic dysfunction. Future development of SCS is expected to incorporate multichannel electrodes, intelligent algorithms, closed-loop control, and robot-assisted rehabilitation,enhancing both precision and efficacy. This article reviews the current situation, surgical indications and contraindications, surgical methods, postoperative management and therapeutic outcomes of SCS in the treatment of central paralysis.

[1]
Gracies JM, Alter KE, Biering-Sørensen B, et al. Spastic paresis:a treatable movement disorder[J]. Mov Disord, 2025, 40(1): 44-50.DOI: 10.1002/mds.30038.
[2]
Li S, Francisco GE, Rymer WZ. A new definition of poststroke spasticity and the interference of spasticity with motor recovery from acute to chronic stages[J]. Neurorehabil Neural Repair, 2021,35(7): 601-610. DOI: 10.1177/15459683211011214.
[3]
Widerström-Noga E. Neuropathic pain and spinal cord injury:management, phenotypes, and biomarkers[J]. Drugs, 2023, 83(11):1001-1025. DOI: 10.1007/s40265-023-01903-7.
[4]
Lerner AM, DeRocco AJ, Yang L, et al. Unraveling the mysteries of acute flaccid myelitis: scientific opportunities and priorities for future research[J]. Clin Infect Dis, 2021, 72(11): 2044-2048. DOI:10.1093/cid/ciaa1432.
[5]
Younsi A, Riemann L, Ishak B, et al. Feasibility of salvage decompressive surgery for pending paralysis due to metastatic spinal cord compression[J]. Clin Neurol Neurosurg, 2021, 202:106509. DOI: 10.1016/j.clineuro.2021.106509.
[6]
王拥军, 李子孝, 谷鸿秋, 等. 中国卒中报告2019(中文版)(1)[J]. 中国卒中杂志, 2020, 15(10): 1037-1043. DOI: 10.3969/j.issn.1673-5765.2020.10.001.Wang YJ, Li ZX, Gu HQ, et al. China Stroke Statistics 2019(1)[J].Chin J Stroke, 2020, 15(10): 1037-1043. DOI: 10.3969/j.issn.1673-5765.2020.10.001.
[7]
《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144. DOI:10.3969/j.issn.1672-5921.2022.02.011.Report on stroke prevention and treatment in China Writing Group. Brief report on stroke prevention and treatment in China,2020[J]. Chin J Cerebrovasc Dis, 2022, 19(2): 136-144. DOI:10.3969/j.issn.1672-5921.2022.02.011.
[8]
刘辰君, 周脉耕, 刘海鹰, 等. 1990~2019年中国颈脊髓损伤的流行病学调查[J]. 中国脊柱脊髓杂志, 2023, 33(5): 390-396.DOI: 10.3969/j.issn.1004-406X.2023.05.03.Liu CJ, Zhou MG, Liu HY, et al. Epidemiological survey of cervical spinal cord injury in China from 1990 to 2019[J]. Chin J Spine Spinal Cord, 2023, 33(5): 390-396. DOI: 10.3969/j.issn.1004-406X.2023.05.03.
[9]
张浩, 刘宇, 肖世宁, 等. 中国创伤性脊髓损伤患者流行病学特征的Meta分析[J]. 中国脊柱脊髓杂志, 2023, 33(5): 397-407.DOI: 10.3969/j.issn.1004-406X.2023.05.04.Zhang H, Liu Y, Xiao SN, et al. Epidemiological characteristics of traumatic spinal cord injury in China: a meta-analysis[J]. Chin J Spine Spinal Cord, 2023, 33(5): 397-407. DOI: 10.3969/j.issn.1004-406X.2023.05.04.
[10]
Suputtitada A, Chatromyen S, Chen CPC, et al. Best practice guidelines for the management of patients with post-stroke spasticity:a modified scoping review[J]. Toxins (Basel), 2024, 16(2): 98.DOI: 10.3390/toxins16020098.
[11]
Liu H, Fan L, Li J, et al. Combined selective peripheral neurotomy in the treatment of spastic lower limbs of spinal cord injury patients[J]. Acta Neurochir (Wien), 2022, 164(8): 2263-2269. DOI: 10.1007/s00701-022-05265-z.
[12]
Li X, Huang X, Xu K, et al. Effects of ultrasound-guided thoracolumbar interfascial plane block combined with general anaesthesia versus general anaesthesia alone on emergence agitation in children with cerebral palsy undergoing selective posterior rhizotomy: protocol for a randomised controlled clinical trial[J]. BMJ Open, 2024, 14(8): e082533. DOI: 10.1136/bmjopen-2023-082533.
[13]
Bai Y, Han S, Guan JY, et al. Contralateral C7 nerve transfer in the treatment of upper-extremity paralysis: a review of anatomical basis, surgical approaches, and neurobiological mechanisms[J].Rev Neurosci, 2022, 33(5): 491-514. DOI: 10.1515/revneuro-2021-0122.
[14]
Rowald A, Komi S, Demesmaeker R, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis[J]. Nat Med, 2022, 28(2): 260-271. DOI: 10.1038/s41591-021-01663-5.
[15]
Dawson J, Liu CY, Francisco GE, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal,device trial[J]. Lancet, 2021, 397(10284): 1545-1553. DOI: 10.1016/s0140-6736(21)00475-x.
[16]
Cho N, Squair JW, Aureli V, et al. Hypothalamic deep brain stimulation augments walking after spinal cord injury[J]. Nat Med,2024, 30(12): 3676-3686. DOI: 10.1038/s41591-024-03306-x.
[17]
Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface[J]. Nature, 2023,618(7963): 126-133. DOI: 10.1038/s41586-023-06094-5.
[18]
Moritz C, Field-Fote EC, Tefertiller C, et al. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial[J]. Nat Med, 2024, 30(5):1276-1283. DOI: 10.1038/s41591-024-02940-9.
[19]
Legg Ditterline B, Harkema SJ, Willhite A, et al. Epidural stimulation for cardiovascular function increases lower limb lean mass in individuals with chronic motor complete spinal cord injury[J]. Exp Physiol, 2020, 105(10): 1684-1691. DOI: 10.1113/ep088876.
[20]
Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review[J]. Biomed Eng Online, 2020, 19(1): 34. DOI:10.1186/s12938-020-00773-4.
[21]
Tsai ST, Chen YC, Cheng HY, et al. Spinal cord stimulation for spinal cord injury patients with paralysis: to regain walking and dignity[J]. Tzu Chi Med J, 2021, 33(1): 29-33. DOI: 10.4103/tcmj.tcmj_53_20.
[22]
Hachmann JT, Yousak A, Wallner JJ, et al. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury[J]. J Neurophysiol, 2021, 126(6): 1843-1859. DOI: 10.1152/jn.00020.2021.
[23]
Kathe C, Skinnider MA, Hutson TH, et al. The neurons that restore walking after paralysis[J]. Nature, 2022, 611(7936): 540-547. DOI: 10.1038/s41586-022-05385-7.
[24]
Wan KR, Ng ZYV, Wee SK, et al. Recovery of volitional motor control and overground walking in participants with chronic clinically motor complete spinal cord injury: restoration of rehabilitative function with epidural spinal stimulation (RESTORES)trial-a preliminary study[J]. J Neurotrauma, 2024, 41(9-10): 1146-1162. DOI: 10.1089/neu.2023.0265.
[25]
Woodington BJ, Curto VF, Yu YL, et al. Electronics with shape actuation for minimally invasive spinal cord stimulation[J]. Sci Adv, 2021, 7(26): eabg7833. DOI: 10.1126/sciadv.abg7833.
[26]
Raso LJ, Deer TR, Schocket SM, et al. Use of a newly developed delivery device for percutaneous introduction of multiple lead configurations for spinal cord stimulation[J]. Neuromodulation,2014, 17(5): 465-471. DOI: 10.1111/ner.12138.
[27]
Powell MP, Verma N, Sorensen E, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis[J]. Nat Med, 2023, 29(3): 689-699. DOI: 10.1038/s41591-022-02202-6.
[28]
Chandrasekaran S, Nanivadekar AC, McKernan G, et al. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees[J]. Elife, 2020, 9: e54349. DOI: 10.7554/eLife.54349.
[29]
Kumar K, Taylor RS, Jacques L, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome[J]. Pain, 2007, 132(1-2): 179-188. DOI:10.1016/j.pain.2007.07.028.
[30]
North RB, Kidd D, Shipley J, et al. Spinal cord stimulation versus reoperation for failed back surgery syndrome: a cost effectiveness and cost utility analysis based on a randomized, controlled trial[J].Neurosurgery, 2007, 61(2): 361-369. DOI: 10.1227/01.NEU.0000 255522.42579.EA.
[31]
Hankov N, Caban M, Demesmaeker R, et al. Augmenting rehabilitation robotics with spinal cord neuromodulation: a proof of concept[J]. Sci Robot, 2025, 10(100): eadn5564. DOI: 10.1126/scirobotics.adn5564.
[32]
Alamri A, MacDonald M, Al-Mohammad A, et al. Spinal cord stimulation for spinal cord injury-related pain: a pilot study[J].Brain Sci, 2024, 14(12): 1173. DOI: 10.3390/brainsci14121173.
[33]
Yu Z, Yang X, Ma T, et al. Effects of noninvasive or minimally invasive neuromodulation techniques on neurogenic lower urinary tract dysfunction after spinal cord injury: a network meta-analysis[J]. Arch Phys Med Rehabil, 2025, 106(6): 961-972. DOI: 10.1016/j.apmr.2024.12.016.
[34]
Karamian BA, Siegel N, Nourie B, et al. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury[J]. J Orthop Traumatol, 2022, 23(1): 2. DOI: 10.1186/s10195-021-00623-6.
[35]
Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity[J].Brain, 2007, 130(Pt 1): 170-180. DOI: 10.1093/brain/awl333.
[36]
Rahman MA, Tharu NS, Gustin SM, et al. Trans-spinal electrical stimulation therapy for functional rehabilitation after spinal cord injury: review[J]. J Clin Med, 2022, 11(6): 1550. DOI: 10.3390/jcm11061550.
[37]
Houle JD, Tessler A. Repair of chronic spinal cord injury[J]. Exp Neurol, 2003, 182(2): 247-260. DOI: 10.1016/s0014-4886(03)00029-3.
[1] 韩秋霞, 朱晗玉, 段颖洁, 田明威, 朱凯怡, 马丽洁, 孙倩美. 维持性血液透析患者单核细胞/高密度脂蛋白胆固醇比值和血小板/高密度脂蛋白胆固醇比值与脑卒中风险的相关性[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 140-145.
[2] 毛文惠, 宋佳丽, 陈晓琳, 张丽丽, 王舒. 基于脑-肠轴探讨调神益智针刺法治疗卒中后认知障碍的中医理论依据[J/OL]. 中华针灸电子杂志, 2025, 14(02): 54-57.
[3] 杨墨, 曹月洲, 吕朋华, 丁鸭锁, 刘振生, 贾振宇, 赵林波, 徐川, 施海彬, 刘圣. 溶栓时间窗内动脉粥样硬化性基底动脉闭塞桥接治疗与直接取栓的多中心对照研究[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 104-109.
[4] 马欣. 卵圆孔未闭相关卒中诊治策略及其进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 266-266.
[5] 李雯婷, 高聪, 廖晓凌. 卒中后认知障碍的危险因素及临床预测模型的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 81-86.
[6] 杜润宜, 张玉梅, 刘利鹏, 公维军. 认知-运动双重任务训练对卒中后认知障碍的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 87-93.
[7] 陈娜娜, 韩莹, 胥青芝. 基于文献计量学的脑卒中吞咽障碍康复护理研究进展与临床热点趋势分析[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 100-108.
[8] 黄镪, 崔莹, 赵莹莹, 张拥波. 围手术期卒中患者的临床预后及其影响因素[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 115-125.
[9] 黄虎, 宋春杰, 刘志伟, 陈兴, 朱发勇, 韩远远. 脑小血管病总负荷对急性前循环大血管闭塞梗死增长率及临床转归的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 141-148.
[10] 庞淇丹, 崔玮, 唐涛, 姜德春, 李深. 检测脑缺血再灌注损伤的探针及技术进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 149-154.
[11] 国家卫生健康委加强脑卒中防治工作减少百万新发残疾工程专家委员会, 吉训明. 国家脑卒中防治与百万减残工程工作进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 1-5.
[12] 张丽华, 张炜, 薛海丽, 朱向阳. 脑心健康管理师主导的认知行为疗法对脑卒中后焦虑、抑郁的影响[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 19-24.
[13] 陈娜, 陈义彤, 崔晓, 李兴, 武美茹, 邓永梅. 基于掌上天坛应用程序的卒中患者延续性护理服务模式的构建[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 32-41.
[14] 王钢, 吴婷婷, 姜永程, 张伟. 外周血中性粒细胞/淋巴细胞比值、D-二聚体及C反应蛋白/白蛋白比值对脑卒中并发卒中相关性肺炎的预测价值[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 42-47.
[15] 马一茁, 胡叶文. 脑卒中患者营养风险筛查与评估工具的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 54-57.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?