切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 129 -133. doi: 10.3877/cma.j.issn.2095-123X.2025.03.001

述评

脑淋巴系统在神经系统疾病中的研究进展
张永明()   
  1. 230041 合肥,安徽省第二人民医院神经外科
  • 收稿日期:2025-03-17 出版日期:2025-06-15
  • 通信作者: 张永明

Research progress of the brain lymphatic system in neurological diseases

Yongming Zhang()   

  1. Department of Neurosurgery, Anhui Second People's Hospital, Hefei 230041, China
  • Received:2025-03-17 Published:2025-06-15
  • Corresponding author: Yongming Zhang
引用本文:

张永明. 脑淋巴系统在神经系统疾病中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 129-133.

Yongming Zhang. Research progress of the brain lymphatic system in neurological diseases[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(03): 129-133.

既往学者认为中枢神经系统缺乏淋巴系统,脑脊液(CSF)和脑间质液(ISF)被认为可以代替淋巴系统帮助脑内有害代谢产物的排出。最近有研究在动物和人体中发现了脑淋巴系统,主要由位于硬脑膜的脑膜淋巴管和位于脑间质的类淋巴系统组成,并以此为基础开展了诸多研究。脑淋巴系统是一个包含全脑血管周围传输通道,专门用于CSF运输和ISF的液体交换,并促进代谢废物从大脑排出。本文围绕脑淋巴系统的解剖、可视化脑淋巴系统的影像学方法及其与神经系统疾病的关系和诊治价值展开述评,旨在更好地理解脑淋巴系统的功能,并开发出针对性的治疗方法。

Historically, scholars believed that the central nervous system (CNS) lacked a lymphatic system. Instead, subarachnoid cerebrospinal fluid (CSF) and interstitial fluid (ISF) were thought to facilitate the excretion of harmful metabolites from the CNS, although the exact mechanisms remain incompletely understood. Recent studies in both animal and human samples have revealed that the cerebral lymphatic system comprises two main components: the meningeal lymphatic vessels located within the dura mater and the glymphatic system situated in the brain parenchyma. Building on these findings, numerous investigations have explored the functional significance of this system. The cerebral lymphatic system serves as a perivascular transport channel specifically for CSF transport and ISF exchange, thereby facilitating the clearance of metabolic waste from the brain. This review will discuss the anatomy of the cerebral lymphatic system, methods for its visual assessment, and its role and value in the diagnosis and treatment of neurosurgical conditions, aiming to better understand the functions of the cerebral lymphatic system and develop targeted treatment methods.

[1]
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147): 147ra111. DOI: 10.1126/scitranslmed.3003748.
[2]
Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J]. J Exp Med, 2015, 212(7): 991-999. DOI: 10.1084/jem.20142290.
[3]
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341. DOI: 10.1038/nature14432.
[4]
Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J]. Elife, 2018, 7: e40070. DOI: 10.7554/eLife.40070.
[5]
Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain[J]. Physiol Rev, 2022, 102(2): 1025-1151. DOI: 10.1152/physrev.00031.2020.
[6]
Wang Y, van Gelderen P, de Zwart JA, et al. Cerebrovascular activity is a major factor in the cerebrospinal fluid flow dynamics[J]. Neuroimage, 2022, 258: 119362. DOI: 10.1016/j.neuroimage.2022.119362.
[7]
Wang S, Yu X, Cheng L, et al. Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice[J]. Cell Death Dis, 2024, 15(6): 448. DOI: 10.1038/s41419-024-06845-w.
[8]
Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow[J]. Nat Commun, 2020, 11(1): 4411. DOI: 10.1038/s41467-020-18115-2.
[9]
Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans[J]. Science, 2019, 363(6429): 880-884. DOI: 10.1126/science.aav2546.
[10]
Muccio M, Chu D, Minkoff L, et al. Upright versus supine MRI: effects of body position on craniocervical CSF flow[J]. Fluids Barriers CNS, 2021, 18(1): 61. DOI: 10.1186/s12987-021-00296-7.
[11]
Jani RH, Sekula RF, Jr. Magnetic resonance imaging of human dural meningeal lymphatics[J]. Neurosurgery, 2018, 83(1): E10-E12. DOI: 10.1093/neuros/nyy171.
[12]
Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics[J]. J Clin Invest, 2017, 127(9): 3210-3219. DOI: 10.1172/jci90603. DOI: 10.3348/kjr.2020.0042.
[13]
Taoka T, Naganawa S. Neurofluid dynamics and the glymphatic system: a neuroimaging perspective[J]. Korean J Radiol, 2020, 21(11): 1199-1209. DOI: 10.3348/kjr.2020.0042.
[14]
Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI[J]. J Clin Invest, 2013, 123(3): 1299-1309. DOI: 10.1172/JCI67677.
[15]
Bae YJ, Kim JM, Choi BS, et al. Altered brain glymphatic flow at diffusion-tensor MRI in rapid eye movement sleep behavior disorder[J]. Radiology, 2023, 307(5): e221848. DOI: 10.1148/radiol.221848.
[16]
Yatsushiro S, Sunohara S, Hayashi N, et al. Cardiac-driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique[J]. Magn Reson Med Sci, 2018, 17(2): 151-160. DOI: 10.2463/mrms.mp.2017-0014.
[17]
Ohene Y, Harrison IF, Nahavandi P, et al. Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study[J]. Neuroimage, 2019, 188: 515-523. DOI: 10.1016/j.neuroimage.2018.12.026.
[18]
Chen Y, Dai Z, Fan R, et al. Glymphatic system visualized by chemical-exchange-saturation-transfer magnetic resonance imaging[J]. ACS Chem Neurosci, 2020, 11(13): 1978-1984. DOI: 10.1021/acschemneuro.0c00222.
[19]
Wu CH, Lirng JF, Ling YH, et al. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood-brain barrier leakage[J]. Ann Neurol, 2021, 89(1): 111-124. DOI: 10.1002/ana.25928.
[20]
Huang SY, Zhang YR, Guo Y, et al. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease[J]. Alzheimers Dement, 2024, 20(5): 3251-3269. DOI: 10.1002/alz.13789.
[21]
Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus[J]. Brain, 2017, 140(10): 2691-2705. DOI: 10.1093/brain/awx191.
[22]
Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes[J]. J Neuroimmune Pharmacol, 2013, 8(4): 840-856. DOI: 10.1007/s11481-013-9470-8.
[23]
Schulz-Heik RJ, Poole JH, Dahdah MN, et al. Service needs and barriers to care five or more years after moderate to severe TBI among veterans[J]. Brain Inj, 2017, 31(10): 1287-1293. DOI: 10.1080/02699052.2017.1307449.
[24]
Bolte AC, Dutta AB, Hurt ME, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis[J]. Nat Commun, 2020, 11(1): 4524. DOI: 10.1038/s41467-020-18113-4.
[25]
Antila S, Karaman S, Nurmi H, et al. Development and plasticity of meningeal lymphatic vessels[J]. J Exp Med, 2017, 214(12): 3645-3667. DOI: 10.1084/jem.20170391.
[26]
Xu Y, Yuan L, Mak J, et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3[J]. J Cell Biol, 2010, 188(1): 115-130. DOI: 10.1083/jcb.200903137.
[27]
Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease[J]. Nature, 2018, 560(7717): 185-191. DOI: 10.1038/s41586-018-0368-8.
[28]
Liao J, Zhang M, Shi Z, et al. Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury[J]. J Neurotrauma, 2023, 40(3-4): 383-394. DOI: 10.1089/neu.2022.0150.
[29]
Chen J, Wang L, Xu H, et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage[J]. Nat Commun, 2020, 11(1): 3159. DOI: 10.1038/s41467-020-16851-z.
[30]
Wang X, Zhang A, Yu Q, et al. Single-cell RNA sequencing and spatial transcriptomics reveal pathogenesis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage[J]. Adv Sci (Weinh), 2023, 10(21): e2301428. DOI: 10.1002/advs.202301428.
[31]
Yuan J, Liu X, Nie M, et al. Inactivation of ERK1/2 signaling mediates dysfunction of basal meningeal lymphatic vessels in experimental subdural hematoma[J]. Theranostics, 2024, 14(1): 304-323. DOI: 10.7150/thno.87633.
[32]
Zille M, Farr TD, Keep RF, et al. Novel targets, treatments, and advanced models for intracerebral haemorrhage[J]. EBioMedicine, 2022, 76: 103880. DOI: 10.1016/j.ebiom.2022.103880.
[33]
Xia F, Keep RF, Ye F, et al. The fate of erythrocytes after cerebral hemorrhage[J]. Transl Stroke Res, 2022, 13(5): 655-664. DOI: 10.1007/s12975-021-00980-8.
[34]
Zheng Y, Tan X, Cao S. The critical role of erythrolysis and microglia/macrophages in clot resolution after intracerebral hemorrhage: a review of the mechanisms and potential therapeutic targets[J]. Cell Mol Neurobiol, 2023, 43(1): 59-67. DOI: 10.1007/s10571-021-01175-3.
[35]
Jeon H, Kim M, Park W, et al. Upregulation of AQP4 improves blood-brain barrier integrity and perihematomal edema following intracerebral hemorrhage[J]. Neurotherapeutics, 2021, 18(4): 2692-2706. DOI: 10.1007/s13311-021-01126-2.
[36]
Liu X, Wu G, Tang N, et al. Glymphatic drainage blocking aggravates brain edema, neuroinflammation via modulating TNF-α, IL-10, and AQP4 after intracerebral hemorrhage in rats[J]. Front Cell Neurosci, 2021, 15: 784154. DOI: 10.3389/fncel.2021.784154.
[37]
Tsai HH, Hsieh YC, Lin JS, et al. Functional investigation of meningeal lymphatic system in experimental intracerebral hemorrhage [J]. Stroke, 2022, 53(3): 987-998. DOI: 10.1161/strokeaha.121.037834.
[38]
Ding XB, Wang XX, Xia DH, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease[J]. Nat Med, 2021, 27(3): 411-418. DOI: 10.1038/s41591-020-01198-1.
[39]
Zou W, Pu T, Feng W, et al. Blocking meningeal lymphatic drainage aggravates Parkinson's disease-like pathology in mice overexpressing mutated α-synuclein[J]. Transl Neurodegener, 2019, 8: 7. DOI: 10.1186/s40035-019-0147-y.
[40]
Antila S, Chilov D, Nurmi H, et al. Sustained meningeal lymphatic vessel atrophy or expansion does not alter Alzheimer's disease-related amyloid pathology[J]. Nat Cardiovasc Res, 2024, 3: 474-491. DOI: 10.1038/s44161-024-00445-9.
[41]
Li W, Chen D, Liu N, et al. Modulation of lymphatic transport in the central nervous system[J]. Theranostics, 2022, 12(3): 1117-1131. DOI: 10.7150/thno.66026.
[42]
Wu CH, Chang FC, Wang YF, et al. Impaired glymphatic and meningeal lymphatic functions in patients with chronic migraine[J]. Ann Neurol, 2024, 95(3): 583-595. DOI: 10.1002/ana.26842.
[1] 王美娣, 王俊, 张艳, 吴珠娟, 严永兴, 刘慧丽. 急性带状疱疹患者并发中枢神经系统感染的危险因素分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(06): 458-464.
[2] 王利红, 王正, 李学伟. 肺炎支原体脑炎患儿伴双眼复视1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 106-113.
[3] 王雅楠, 刘丹, 曹正浓, 贾慧敏. 儿童迟发性先天性膈疝患儿的临床诊治特点分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 410-419.
[4] 赖圣杰, 方欣, 方友强. 2023年欧洲内分泌学会及加拿大泌尿外科学会肾上腺偶发瘤诊疗指南解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 309-312.
[5] 胡靖泽, 孟祥祺, 刘美辰, 陈浩, 沈若菲, 蒋传路, 蔡金全. 元宇宙应用于神经外科专业人才培养的意义[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(06): 373-375.
[6] 赵浩, 尚峰, 程玮涛, 徐跃峤, 齐猛, 蒋丽丹, 陈文劲, 王宁, 曲鑫. 神经外科围术期瞳孔改变的相关因素分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 147-150.
[7] 王如海, 韩超, 于强, 胡海成, 孙菲琳, 杨震. 重型创伤性脑损伤患者术后慢性意识障碍的危险因素及其预测价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 78-83.
[8] 程亚飞, 郭航. 中枢神经系统AQP4的调节机制研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 48-54.
[9] 王希岗, 张波, 李鸣, 高敏, 薛建新. 神经外科手术部位感染在HIV感染者与非HIV感染者中的临床差异[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(04): 228-233.
[10] 张钊龙, 郑卉, 赵丹阳, 赵悰怡, 刘之琪, 张优佳, 秦秉玉. 趋化因子CXC配体13在中枢神经系统感染中的意义及相关研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 54-59.
[11] 孙金兴, 林豪鹏, 贾俊恒, 李珍柯, 张超, 吴倩倩, 李新钢, 李卫国. 脑深部电刺激术在帕金森病中的临床应用与研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(06): 321-324.
[12] 刘国龙, 王鹏, 谭超, 杨辉, 彭菊红. 神经外科机器人辅助双通道颅内血肿清除术治疗高血压性脑出血[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 254-256.
[13] 白杰, 王唯一, 陈超, 王帆, 肖新如. 神经外科住培医师职业倦怠及影响因素研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 662-670.
[14] 张芳芳, 李军, 赵玉洁, 于彤, 宁春平. 侵袭性血管黏液瘤的影像学特征并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 254-259.
[15] 王婉杰, 宋文超, 王键, 倪良晨, 洪健, 朱孝成, 姚立彬. 肥胖与中枢神经系统调控的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 108-112.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?