| [1] |
Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease[J]. Nat Rev Neurol, 2019, 15(10): 565-581. DOI: 10.1038/s41582-019-0244-7.
|
| [2] |
|
| [3] |
Shacham T, Patel C, Lederkremer GZ. PERK pathway and neurodegenerative disease: to inhibit or to activate?[J]. Biomolecules, 2021, 11(3): 354. DOI: 10.3390/biom11030354.
|
| [4] |
Salaroglio IC, Panada E, Moiso E, et al. PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy[J]. Mol Cancer, 2017, 16(1): 91. DOI: 10.1186/s12943-017-0657-0.
|
| [5] |
Lee DH, Park JS, Lee YS, et al. PERK prevents hepatic lipotoxicity by activating the p62-ULK1 axis-mediated noncanonical KEAP1-Nrf2 pathway[J]. Redox Biol, 2022, 50: 102235. DOI: 10.1016/j.redox.2022.102235.
|
| [6] |
Halliday M, Hughes D, Mallucci GR. Fine-tuning PERK signaling for neuroprotection[J]. J Neurochem, 2017, 142(6): 812-826. DOI: 10.1111/jnc.14112.
|
| [7] |
Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway[J]. Int J Biochem Cell Biol, 2006, 38(3): 317-332. DOI: 10.1016/j.biocel.2005.09.018.
|
| [8] |
Hirasawa H, Jiang C, Zhang P, et al. Mechanical stimulation suppresses phosphorylation of eIF2alpha and PERK-mediated responses to stress to the endoplasmic reticulum[J]. FEBS Lett, 2010, 584(4): 745-752. DOI: 10.1016/j.febslet.2009.12.028.
|
| [9] |
Taalab YM, Ibrahim N, Maher A, et al. Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)[J]. Rev Neurosci, 2018, 29(4): 387-415. DOI: 10.1515/revneuro-2017-0071.
|
| [10] |
Yang P, Jiang PW, Li C, et al. Cdc25C/cdc2/cyclin B, raf/MEK/ERK and PERK/eIF2α/CHOP pathways are involved in forskolin-induced growth inhibition of MM.1S cells by G2/M arrest and mitochondrion-dependent apoptosis[J]. Cell Cycle, 2021, 20(22): 2402-2412. DOI: 10.1080/15384101.2021.1983280.
|
| [11] |
Rozpędek-Kamińska W, Siwecka N, Wawrzynkiewicz A, et al. The PERK-dependent molecular mechanisms as a novel therapeutic target for neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(6): 2108. DOI: 10.3390/ijms21062108.
|
| [12] |
van Vliet AR, Garg AD, Agostinis P. Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum[J]. Biol Chem, 2016, 397(7): 649-656. DOI: 10.1515/hsz-2016-0108.
|
| [13] |
Sassano ML, van Vliet AR, Vervoort E, et al. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration[J]. J Cell Biol, 2023, 222(3): e202206008. DOI: 10.1083/jcb.202206008.
|
| [14] |
Bassot A, Chen J, Takahashi-Yamashiro K, et al. The endoplasmic reticulum kinase PERK interacts with the oxidoreductase ERO1 to metabolically adapt mitochondria[J]. Cell Rep, 2023, 42(1): 111899. DOI: 10.1016/j.celrep.2022.111899.
|
| [15] |
Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease[J]. FEBS Lett, 2018, 592(5): 728-742. DOI: 10.1002/1873-3468.12956.
|
| [16] |
Luo HM, Xu J, Huang DX, et al. Mitochondrial dysfunction of induced pluripotent stem cells-based neurodegenerative disease modeling and therapeutic strategy[J]. Front Cell Dev Biol, 2022, 10: 1030390. DOI: 10.3389/fcell.2022.1030390.
|
| [17] |
Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease[J]. Nat Rev Dis Primers, 2021, 7(1): 33. DOI: 10.1038/s41572-021-00269-y.
|
| [18] |
|
| [19] |
Ohno M. Perk as a hub of multiple pathogenic pathways leading to memory deficits and neurodegeneration in Alzheimer's disease[J]. Brain Res Bull, 2018, 141: 72-78. DOI: 10.1016/j.brainresbull.2017.08.007.
|
| [20] |
Cheng KC, Chiang HC. XBP1 and PERK have distinct roles in Aβ-induced pathology[J]. Mol Neurobiol, 2018, 55(9): 7523-7532. DOI: 10.1007/s12035-018-0942-y.
|
| [21] |
Rozpedek W, Markiewicz L, Diehl JA, et al. Unfolded protein response and PERK kinase as a new therapeutic target in the pathogenesis of Alzheimerp's disease[J]. Curr Med Chem, 2015, 22(27): 3169-3184. DOI: 10.2174/0929867322666150818104254.
|
| [22] |
Shao Y, Xu Y, Di H, et al. The inhibition of ORMDL3 prevents Alzheimer's disease through ferroptosis by PERK/ATF4/HSPA5 pathway[J]. IET Nanobiotechnol, 2023, 17(3): 182-196. DOI: 10.1049/nbt2.12113.
|
| [23] |
|
| [24] |
|
| [25] |
Zhang Z, Hou L, Li X, et al. Neuroprotection of inositol hexaphosphate and changes of mitochondrion mediated apoptotic pathway and α-synuclein aggregation in 6-OHDA induced Parkinson's disease cell model[J]. Brain Res, 2016, 1633: 87-95. DOI: 10.1016/j.brainres.2015.12.035.
|
| [26] |
Mercado G, Castillo V, Soto P, et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease[J]. Neurobiol Dis, 2018, 112: 136-148. DOI: 10.1016/j.nbd.2018.01.004.
|
| [27] |
Park J, Gong JH, Chen Y, et al. Activation of ROS-PERK-TFEB by filbertone ameliorates neurodegenerative diseases via enhancing the autophagy-lysosomal pathway[J]. J Nutr Biochem, 2023, 118: 109325. DOI: 10.1016/j.jnutbio.2023.109325.
|
| [28] |
|
| [29] |
|
| [30] |
Ganz J, Shacham T, Kramer M, et al. A novel specific PERK activator reduces toxicity and extends survival in Huntington's disease models[J]. Sci Rep, 2020, 10(1): 6875. DOI: 10.1038/s41598-020-63899-4.
|
| [31] |
Hassab LY, Abbas SS, Mohammed RA, et al. Dimethyl fumarate abrogates striatal endoplasmic reticulum stress in experimentally induced late-stage Huntington's disease: focus on the IRE1α/JNK and PERK/CHOP trajectories[J]. Front Pharmacol, 2023, 14: 1133863. DOI: 10.3389/fphar.2023.1133863.
|
| [32] |
|
| [33] |
Stone S, Yue Y, Stanojlovic M, et al. Neuron-specific PERK inactivation exacerbates neurodegeneration during experimental autoimmune encephalomyelitis[J]. JCI Insight, 2019, 4(2): e124232. DOI: 10.1172/jci.insight.124232.
|
| [34] |
Lei Z, Yue Y, Stone S, et al. NF-κB activation accounts for the cytoprotective effects of PERK activation on oligodendrocytes during eae[J]. J Neurosci, 2020, 40(33): 6444-6456. DOI: 10.1523/jneurosci.1156-20.2020.
|