| [1] |
|
| [2] |
Studnicki R, Studzińska K, Adamczewski T, et al. Analyzing the impact of rehabilitation utilizing neurofunctional exercises on the functional status of stroke patients[J]. J Clin Med, 2024, 13(20): 6271. DOI: 10.3390/jcm13206271.
|
| [3] |
Gomes E, Alder G, Bright FAS, et al. Understanding task "challenge" in stroke rehabilitation: an interdisciplinary concept analysis[J]. Disabil Rehabil, 2025, 47(3): 560-570. DOI: 10.1080/09638288.2024.2356010.
|
| [4] |
Fisher RJ, Russell L, Riley-Bennett F, et al. Barriers and facilitators in providing home-based rehabilitation for stroke survivors with severe disability in the UK: an online focus group study with multidisciplinary rehabilitation teams[J]. BMJ Open, 2023, 13(8): e071217. DOI: 10.1136/bmjopen-2022-071217.
|
| [5] |
|
| [6] |
|
| [7] |
Ting WK, Fadul FA, Fecteau S, et al. Neurostimulation for stroke rehabilitation[J]. Front Neurosci, 2021, 15: 649459. DOI: 10.3389/fnins.2021.649459.
|
| [8] |
|
| [9] |
Jeffares I, Merriman NA, Doyle F, et al. Designing stroke services for the delivery of cognitive rehabilitation: a qualitative study with stroke rehabilitation professionals[J]. Neuropsychol Rehabil, 2023, 33(1): 24-47. DOI: 10.1080/09602011.2021.1977155.
|
| [10] |
|
| [11] |
|
| [12] |
Dénes Z, Borosnyay K, Masát O. Stroke rehabilitation outcome in an inpatient neurological rehabilitation unit[J]. Ideggyogy Sz, 2023, 76(3-4): 109-114. DOI: 10.18071/isz.76.0109.
|
| [13] |
Terranova TT, Simis M, Santos ACA, et al. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke: results from a randomized clinical trial[J]. Front Neurorobot, 2021, 15: 684019. DOI: 10.3389/fnbot.2021.684019.
|
| [14] |
Iwamoto Y, Imura T, Suzukawa T, et al. Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients[J]. J Stroke Cerebrovasc Dis, 2019, 28(7): 2018-2025. DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.006.
|
| [15] |
Calabrò RS, Sorrentino G, Cassio A, et al. Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations[J]. Eur J Phys Rehabil Med, 2021, 57(3): 460-471. DOI: 10.23736/s1973-9087.21.06887-8.
|
| [16] |
Hu Y, Tian J, Wen X, et al. Clinical effects of MOTOmed intelligent exercise training combined with intensive walking training on the rehabilitation of walking, nerve and lower limb functions among patients with hemiplegia after stroke[J]. Pak J Med Sci, 2022, 38(5): 1222-1227. DOI: 10.12669/pjms.38.5.5259.
|
| [17] |
Ahmed N, Mauad VAQ, Gomez-Rojas O, et al. The impact of rehabilitation-oriented virtual reality device in patients with ischemic stroke in the early subacute recovery phase: study protocol for a phase III, single-blinded, randomized, controlled clinical trial[J]. J Cent Nerv Syst Dis, 2020, 12: 1179573519899471. DOI: 10.1177/1179573519899471.
|
| [18] |
Shahmoradi L, Almasi S, Ahmadi H, et al. Virtual reality games for rehabilitation of upper extremities in stroke patients[J]. J Bodyw Mov Ther, 2021, 26: 113-122. DOI: 10.1016/j.jbmt.2020.10.006.
|
| [19] |
Toh SFM, Fong KNK, Gonzalez PC, et al. Application of home-based wearable technologies in physical rehabilitation for stroke: a scoping review[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 1614-1623. DOI: 10.1109/tnsre.2023.3252880.
|
| [20] |
Proulx CE, Louis Jean MT, Higgins J, et al. Somesthetic, visual, and auditory feedback and their interactions applied to upper limb neurorehabilitation technology: a narrative review to facilitate contextualization of knowledge[J]. Front Rehabil Sci, 2022, 3: 789479. DOI: 10.3389/fresc.2022.789479.
|
| [21] |
Veldema J, Gharabaghi A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke[J]. J Neuroeng Rehabil, 2022, 19(1): 84. DOI: 10.1186/s12984-022-01062-y.
|
| [22] |
Kim JH, Cust S, Lammers B, et al. Cerebellar tDCS enhances functional communication skills in chronic aphasia[J]. Aphasiology, 2024, 38(12): 1895-1915. DOI: 10.1080/02687038.2024.2328874.
|
| [23] |
Dawson J, Liu CY, Francisco GE, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial[J]. Lancet, 2021, 397(10284): 1545-1553. DOI: 10.1016/s0140-6736(21)00475-x.
|
| [24] |
Glickman LB, Chimatiro G. Clients with stroke and non-stroke and their guardians' views on community reintegration status after in-patient rehabilitation[J]. Malawi Med J, 2018, 30(3): 174-179. DOI: 10.4314/mmj.v30i3.8.
|
| [25] |
Hong I, Hreha KP. Swallowing status comparison between primary dysphagia and post-stroke dysphagia in inpatient rehabilitation facilities[J]. Swallowing Rehabil, 2020, 3(1): 23-31. DOI: 10.31115/sr.2020.3.1.23.
|
| [26] |
Ciancarelli I, Morone G, Iosa M, et al. Influence of oxidative stress and inflammation on nutritional status and neural plasticity: new perspectives on post-stroke neurorehabilitative outcome[J]. Nutrients, 2022, 15(1): 108. DOI: 10.3390/nu15010108.
|
| [27] |
Chiu CC, Wang JJ, Hung CM, et al. Impact of multidisciplinary stroke post-acute care on cost and functional status: a prospective study based on propensity score matching[J]. Brain Sci, 2021, 11(2): 161. DOI: 10.3390/brainsci11020161.
|