切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2026, Vol. 16 ›› Issue (01) : 1 -7. doi: 10.3877/cma.j.issn.2095-123X.2026.01.001

述评

植入式脑机接口盲人复明的研究展望
郭莉丽1, 徐超2, 何玮3, 徐江1, 崔砚1, 徐如祥1,()   
  1. 1610072 成都,四川省医学科学院·四川省人民医院神经外科(植入式脑机接口四川省工程研究中心)
    2100084 北京,清华大学电子工程系
    3611731 成都,电子科技大学电子科学技术研究院
  • 收稿日期:2025-11-20 出版日期:2026-02-15
  • 通信作者: 徐如祥

Research perspectives on implantable brain-computer interfaces for vision restoration in the blind

Lili Guo1, Chao Xu2, Wei He3, Jiang Xu1, Yan Cui1, Ruxiang Xu1,()   

  1. 1Department of Neurosurgery, Sichuan Academy of Medical Scienses & Sichuan Provincial People's Hospital (Sichuan Provincial Engineering Research Center for Implantable Brain-Computer Interfaces), Chengdu 610072, China
    2Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    3Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2025-11-20 Published:2026-02-15
  • Corresponding author: Ruxiang Xu
  • Supported by:
    National Key Research and Development Program of China(2023YFF1204200); National Natural Science Foundation of China(82571686)
引用本文:

郭莉丽, 徐超, 何玮, 徐江, 崔砚, 徐如祥. 植入式脑机接口盲人复明的研究展望[J/OL]. 中华脑科疾病与康复杂志(电子版), 2026, 16(01): 1-7.

Lili Guo, Chao Xu, Wei He, Jiang Xu, Yan Cui, Ruxiang Xu. Research perspectives on implantable brain-computer interfaces for vision restoration in the blind[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2026, 16(01): 1-7.

视觉功能丧失给人们的日常生活和社会经济带来了沉重的负担。感官(如触觉、听觉)替代是目前常用手段,具有非侵入性且手术风险低的特点,但信息量有限。随着材料、人工智能、微电子工艺技术的进步,植入式视觉脑机接口(BCI)调控成为获取视觉感知更为直接的方法。本文从视网膜植入物和皮质植入物两个方面重点阐述植入式视觉BCI的技术手段和最新研究进展,分析关键技术瓶颈与突破,并对未来技术的发展进行展望,以期为植入式BCI应用于视觉修复的科研与临床实践提供参考,为盲人复明带来新希望。

Loss of visual function imposes a substantial burden on daily life and socioeconomic well-being. Sensory substitution (e.g., tactile or auditory channels) represents a commonly employed non-invasive approach with low surgical risk; however, its capacity for information transfer is limited. Recent advancements in materials science, artificial intelligence, and microelectronic fabrication have positioned implantable visual brain-computer interfaces (BCIs) as a more direct method for eliciting visual perceptions. This article focuses on elaborating the technical approaches and latest research progress of implantable visual BCIs from the perspectives of retinal implants and cortical implants, further analyzes critical technical challenges and potential breakthroughs, and looks ahead to the future development of related technologies, aiming to provide a reference for the scientific research and clinical practice of implantable BCIs applied to visual restoration, and bring new hope for the visual recovery of the blind.

[1]
Fernández E, Alfaro A, Soto-Sánchez C, et al. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex[J]. J Clin Invest, 2021, 131(23): e151331. DOI: 10.1172/JCI151331.
[2]
Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8(9): 1263-1268. DOI: 10.1038/nn1525.
[3]
Jurkunas UV, Kaufman AR, Yin J, et al. Cultivated autologous limbal epithelial cell (CALEC) transplantation for limbal tem cell deficiency: a phase I/II clinical trial of the first xenobiotic-free, serum-free, antibiotic-free manufacturing protocol developed in the US[J]. Nat Commun, 2025, 16(1): 1607. DOI: 10.1038/s41467-025-56461-1.
[4]
Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy[J]. Nat Med, 2021, 27(7): 1223-1229. DOI: 10.1038/s41591-021-01351-4.
[5]
Lu G, Gong C, Sun Y, et al. Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration[J]. Nat Commun, 2024, 15(1): 4481. DOI: 10.1038/s41467-024-48683-6.
[6]
Mirochnik RM, Pezaris JS. Contemporary approaches to visual prostheses[J]. Mil Med Res, 2019, 6(1): 19. DOI: 10.1186/s40779-019-0206-9.
[7]
Liu X, Chen P, Ding X, et al. A narrative review of cortical visual prosthesis systems: the latest progress and significance of nanotechnology for the future[J]. Ann Transl Med, 2022, 10(12): 716. DOI: 10.21037/atm-22-2858.
[8]
Ahuja AK, Dorn JD, Caspi A, et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task[J]. Br J Ophthalmol, 2011, 95(4): 539-543. DOI: 10.1136/bjo.2010.179622.
[9]
Dorn JD, Ahuja AK, Caspi A, et al. The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis[J]. JAMA Ophthalmol, 2013, 131(2): 183-189. DOI: 10.1001/2013.jamaophthalmol.221.
[10]
da Cruz L, Coley BF, Dorn J, et al. The argus ii epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss[J]. Br J Ophthalmol, 2013, 97(5): 632-636. DOI: 10.1136/bjophthalmol-2012-301525.
[11]
Barry MP, Dagnelie G; Argus II Study Group. Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5095-5101. DOI: 10.1167/iovs.12-9536.
[12]
Ho AC, Humayun MS, Dorn JD, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind[J]. Ophthalmology, 2015, 122(8): 1547-1554. DOI: 10.1016/j.ophtha.2015.04.032.
[13]
Shepherd RK, Shivdasani MN, Nayagam DA, et al. Visual prostheses for the blind[J]. Trends Biotechnol, 2013, 31(10): 562-571. DOI: 10.1016/j.tibtech.2013.07.001.
[14]
Yue L, Castillo J, Gonzalez AC, et al. Restoring color perception to the blind: an electrical stimulation strategy of retina in patients with end-stage retinitis pigmentosa[J]. Ophthalmology, 2021, 128(3): 453-462. DOI: 10.1016/j.ophtha.2020.08.019.
[15]
Muqit MMK, Le Mer Y, Olmos de Koo L, et al. Prosthetic visual acuity with the PRIMA subretinal microchip in patients with atrophic age-related macular degeneration at 4 years follow-up[J]. Ophthalmol Sci, 2024, 4(5): 100510. DOI: 10.1016/j.xops.2024.100510.
[16]
Wang S, Jiang C, Yu Y, et al. Tellurium nanowire retinal nanoprosthesis improves vision in models of blindness[J]. Science, 2025, 388(6751): eadu2987. DOI: 10.1126/science.adu2987.
[17]
Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah electrode array technologies[J]. J Neural Eng, 2016, 13(6): 061003. DOI: 10.1088/1741-2560/13/6/061003.
[18]
Löwenstein K, Borchardt M. Symptomatologie und elektrische Reizung bei einer Schußverletzung des Hinterhauptlappens[J]. Dtsch Z Nervenheilkd, 1918, 58(3-6): 264-292. DOI: 10.1007/BF01629694.
[19]
Krause F. Die Sehbahn in chirurgischer Beziehung und die Faradische Reizung des Sehzentrums[J]. Klin Wochenschr, 1924, 3: 1260-1265. DOI: 10.1007/BF01735820.
[20]
Palanker D, Goetz G. Restoring sight with retinal prostheses[J]. Phys Today, 2018, 71(7): 26-32. DOI: 10.1063/PT.3.3970.
[21]
Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex[J]. J Physiol, 1968, 196(2): 479-493. DOI: 10.1113/jphysiol.1968.sp008519.
[22]
Dobelle WH, Mladejovsky MG, Evans JR, et al. "Braille" reading by a blind volunteer by visual cortex stimulation[J]. Nature, 1976, 259(5539): 111-112. DOI: 10.1038/259111a0.
[23]
Rush AD, Troyk PR. A power and data link for a wireless-implanted neural recording system[J]. IEEE Trans Biomed Eng, 2012, 59(11): 3255-3262. DOI: 10.1109/tbme.2012.2214385.
[24]
Fernández E, Normann RA. CORTIVIS approach for an intracortical visual prostheses[M]//Gabel V (eds). Artificial vision. Cham: Springer, 2017: 191-201. DOI: 10.1007/978-3-319-41876-6_15.
[25]
Lowery AJ, Rosenfeld JV, Rosa MGP, et al. Monash vision group's Gennaris cortical implant for vision restoration[M]//Gabel V (eds). Artificial vision. Cham: Springer, 2017: 215-225. DOI: 10.1007/978-3-319-41876-6_17.
[26]
Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics[J]. Neurotherapeutics, 2019, 16(1): 134-143. DOI: 10.1007/s13311-018-0660-1.
[27]
Troyk PR. The intracortical visual prosthesis project[M]//Gabel V (eds). Artificial vision. Cham: Springer, 2017: 203-214. DOI: 10.1007/978-3-319-41876-6_16.
[28]
Weiland JD, Humayun MS. Retinal prosthesis[J]. IEEE Trans Biomed Eng, 2014, 61(5): 1412-1424. DOI: 10.1109/tbme.2014.2314733.
[29]
Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces[J]. Electroencephalogr Clin Neurophysiol, 1997, 102(3): 228-239. DOI: 10.1016/s0013-4694(96)95176-0.
[30]
Fernandez E, Alfaro A, Toledano R, et al. Perceptions elicited by electrical stimulation of human visual cortex[J]. Invest Ophthalmol Vis Sci, 2015, 56(7): 777.
[31]
Lee AH, Lee J, Leung V, et al. Patterned electrical brain stimulation by a wireless network of implantable microdevices[J]. Nat Commun, 2024, 15(1): 10093. DOI: 10.1038/s41467-024-54542-1.
[32]
Ognard J, El Hajj G, Verma O, et al. Advances in endovascular brain computer interface: systematic review and future implications[J]. J Neurosci Methods, 2025, 420: 110471. DOI: 10.1016/j.jneumeth.2025.110471.
[33]
Bosking WH, Sun P, Ozker M, et al. Saturation in phosphene size with increasing current levels delivered to human visual cortex[J]. J Neurosci, 2017, 37(30): 7188-7197. DOI: 10.1523/jneurosci.2896-16.2017.
[34]
Anbarasan R, Gomez Carmona D, Mahendran R. Human taste-perception: Brain Computer Interface (BCI) and its application as an engineering tool for taste-driven sensory studies[J]. Food Eng Rev, 2022, 14: 408-434. DOI: 10.1007/s12393-022-09308-0.
[35]
da Cruz L, Dorn JD, Humayun MS, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial[J]. Ophthalmology, 2016, 123(10): 2248-2254. DOI: 10.1016/j.ophtha.2016.06.049.
[36]
Stingl K, Bartz-Schmidt KU, Besch D, et al. Subretinal visual implant Alpha IMS--clinical trial interim report[J]. Vision Res, 2015, 111(Pt B): 149-160. DOI: 10.1016/j.visres.2015.03.001.
[37]
Jorfi M, Skousen JL, Weder C, et al. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications[J]. J Neural Eng, 2015, 12(1): 011001. DOI: 10.1088/1741-2560/12/1/011001.
[38]
Goss-Varley M, Dona KR, McMahon JA, et al. Microelectrode implantation in motor cortex causes fine motor deficit: Implications on potential considerations to brain computer interfacing and human augmentation[J]. Sci Rep, 2017, 7(1): 15254. DOI: 10.1038/s41598-017-15623-y.
[39]
Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex[J]. Neuron, 2007, 56(2): 366-383. DOI: 10.1016/j.neuron.2007.10.012.
[1] 张佳宁, 任予. 上臂输液港在乳腺癌患者中的临床应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 175-178.
[2] 胡怡凡, 罗莎莎. 多模态影像技术在糖尿病性视网膜病变早期诊断中的应用进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(04): 247-251.
[3] 耿超, 董立红, 俞华, 刘俊. 影响视网膜静脉阻塞伴黄斑水肿治疗效果因素的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(04): 220-225.
[4] 关倩, 潘晓霞, 王东. 基于增殖型糖尿病视网膜病变玻璃体切割术后短期预后影响因素Lasso-Logistic回归预测模型的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(04): 212-219.
[5] 葛程, 石燕红, 陶勇. 调节性T细胞外泌体对血管内皮细胞保护作用的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 155-160.
[6] 李洪黎, 张妍春. 神经营养因子对糖尿病视网膜病变神经血管单元损伤保护的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 176-182.
[7] 张帆, 王海波, 袁琳慧, 靳蕾, 刘新. 糖尿病性黄斑水肿发病机制与治疗研究的新进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 188-192.
[8] 张莉, 余双, 王宁利. 视网膜血管分形分析在青光眼和脑卒中患者中应用的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 141-148.
[9] 张莉, 左晓玲, 王宁利. 青光眼患者视神经形态结构变化与血流密度及血氧代谢改变关系的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(02): 78-86.
[10] 兰心月, 张正威. 玻璃体视网膜交界面特点及其相关疾病的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(02): 114-118.
[11] 崔砚, 徐超, 刘伟, 徐江, 李芳家, 王洋洋, 邱文乔, 郭莉丽, 袁瑛, 窦维蓓, 徐如祥. 植入式脑机接口技术临床应用及其科技伦理[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 273-279.
[12] 于炎冰. 功能神经外科的数智化发展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 257-260.
[13] 陈秀梅, 孙冠宸, 丘伟燕, 陈思涓, 谢曼英, 何丽娟, 广东省护士协会介入护士分会, 广东省医师协会介入医师分会. 视网膜中央动脉阻塞介入治疗围术期护理专家共识[J/OL]. 中华介入放射学电子杂志, 2025, 13(03): 193-205.
[14] 彭辉, 王燕青. 2型糖尿病载脂蛋白E基因多态性与糖尿病视网膜病变及血脂水平相关研究[J/OL]. 中华诊断学电子杂志, 2025, 13(04): 270-274.
[15] 王燕青, 彭辉. 视网膜静脉阻塞与载脂蛋白E和亚甲基四氢叶酸还原酶C677T基因多态性的相关研究[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 183-187.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?