| [1] |
Fernández E, Alfaro A, Soto-Sánchez C, et al. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex[J]. J Clin Invest, 2021, 131(23): e151331. DOI: 10.1172/JCI151331.
|
| [2] |
Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8(9): 1263-1268. DOI: 10.1038/nn1525.
|
| [3] |
Jurkunas UV, Kaufman AR, Yin J, et al. Cultivated autologous limbal epithelial cell (CALEC) transplantation for limbal tem cell deficiency: a phase I/II clinical trial of the first xenobiotic-free, serum-free, antibiotic-free manufacturing protocol developed in the US[J]. Nat Commun, 2025, 16(1): 1607. DOI: 10.1038/s41467-025-56461-1.
|
| [4] |
Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy[J]. Nat Med, 2021, 27(7): 1223-1229. DOI: 10.1038/s41591-021-01351-4.
|
| [5] |
Lu G, Gong C, Sun Y, et al. Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration[J]. Nat Commun, 2024, 15(1): 4481. DOI: 10.1038/s41467-024-48683-6.
|
| [6] |
Mirochnik RM, Pezaris JS. Contemporary approaches to visual prostheses[J]. Mil Med Res, 2019, 6(1): 19. DOI: 10.1186/s40779-019-0206-9.
|
| [7] |
Liu X, Chen P, Ding X, et al. A narrative review of cortical visual prosthesis systems: the latest progress and significance of nanotechnology for the future[J]. Ann Transl Med, 2022, 10(12): 716. DOI: 10.21037/atm-22-2858.
|
| [8] |
Ahuja AK, Dorn JD, Caspi A, et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task[J]. Br J Ophthalmol, 2011, 95(4): 539-543. DOI: 10.1136/bjo.2010.179622.
|
| [9] |
Dorn JD, Ahuja AK, Caspi A, et al. The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis[J]. JAMA Ophthalmol, 2013, 131(2): 183-189. DOI: 10.1001/2013.jamaophthalmol.221.
|
| [10] |
da Cruz L, Coley BF, Dorn J, et al. The argus ii epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss[J]. Br J Ophthalmol, 2013, 97(5): 632-636. DOI: 10.1136/bjophthalmol-2012-301525.
|
| [11] |
Barry MP, Dagnelie G; Argus II Study Group. Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5095-5101. DOI: 10.1167/iovs.12-9536.
|
| [12] |
Ho AC, Humayun MS, Dorn JD, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind[J]. Ophthalmology, 2015, 122(8): 1547-1554. DOI: 10.1016/j.ophtha.2015.04.032.
|
| [13] |
Shepherd RK, Shivdasani MN, Nayagam DA, et al. Visual prostheses for the blind[J]. Trends Biotechnol, 2013, 31(10): 562-571. DOI: 10.1016/j.tibtech.2013.07.001.
|
| [14] |
Yue L, Castillo J, Gonzalez AC, et al. Restoring color perception to the blind: an electrical stimulation strategy of retina in patients with end-stage retinitis pigmentosa[J]. Ophthalmology, 2021, 128(3): 453-462. DOI: 10.1016/j.ophtha.2020.08.019.
|
| [15] |
Muqit MMK, Le Mer Y, Olmos de Koo L, et al. Prosthetic visual acuity with the PRIMA subretinal microchip in patients with atrophic age-related macular degeneration at 4 years follow-up[J]. Ophthalmol Sci, 2024, 4(5): 100510. DOI: 10.1016/j.xops.2024.100510.
|
| [16] |
Wang S, Jiang C, Yu Y, et al. Tellurium nanowire retinal nanoprosthesis improves vision in models of blindness[J]. Science, 2025, 388(6751): eadu2987. DOI: 10.1126/science.adu2987.
|
| [17] |
Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah electrode array technologies[J]. J Neural Eng, 2016, 13(6): 061003. DOI: 10.1088/1741-2560/13/6/061003.
|
| [18] |
Löwenstein K, Borchardt M. Symptomatologie und elektrische Reizung bei einer Schußverletzung des Hinterhauptlappens[J]. Dtsch Z Nervenheilkd, 1918, 58(3-6): 264-292. DOI: 10.1007/BF01629694.
|
| [19] |
Krause F. Die Sehbahn in chirurgischer Beziehung und die Faradische Reizung des Sehzentrums[J]. Klin Wochenschr, 1924, 3: 1260-1265. DOI: 10.1007/BF01735820.
|
| [20] |
Palanker D, Goetz G. Restoring sight with retinal prostheses[J]. Phys Today, 2018, 71(7): 26-32. DOI: 10.1063/PT.3.3970.
|
| [21] |
Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex[J]. J Physiol, 1968, 196(2): 479-493. DOI: 10.1113/jphysiol.1968.sp008519.
|
| [22] |
Dobelle WH, Mladejovsky MG, Evans JR, et al. "Braille" reading by a blind volunteer by visual cortex stimulation[J]. Nature, 1976, 259(5539): 111-112. DOI: 10.1038/259111a0.
|
| [23] |
Rush AD, Troyk PR. A power and data link for a wireless-implanted neural recording system[J]. IEEE Trans Biomed Eng, 2012, 59(11): 3255-3262. DOI: 10.1109/tbme.2012.2214385.
|
| [24] |
Fernández E, Normann RA. CORTIVIS approach for an intracortical visual prostheses[M]// Gabel V (eds). Artificial vision. Cham: Springer, 2017: 191-201. DOI: 10.1007/978-3-319-41876-6_15.
|
| [25] |
Lowery AJ, Rosenfeld JV, Rosa MGP, et al. Monash vision group's Gennaris cortical implant for vision restoration[M]// Gabel V (eds). Artificial vision. Cham: Springer, 2017: 215-225. DOI: 10.1007/978-3-319-41876-6_17.
|
| [26] |
Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics[J]. Neurotherapeutics, 2019, 16(1): 134-143. DOI: 10.1007/s13311-018-0660-1.
|
| [27] |
Troyk PR. The intracortical visual prosthesis project[M]// Gabel V (eds). Artificial vision. Cham: Springer, 2017: 203-214. DOI: 10.1007/978-3-319-41876-6_16.
|
| [28] |
Weiland JD, Humayun MS. Retinal prosthesis[J]. IEEE Trans Biomed Eng, 2014, 61(5): 1412-1424. DOI: 10.1109/tbme.2014.2314733.
|
| [29] |
Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces[J]. Electroencephalogr Clin Neurophysiol, 1997, 102(3): 228-239. DOI: 10.1016/s0013-4694(96)95176-0.
|
| [30] |
Fernandez E, Alfaro A, Toledano R, et al. Perceptions elicited by electrical stimulation of human visual cortex[J]. Invest Ophthalmol Vis Sci, 2015, 56(7): 777.
|
| [31] |
Lee AH, Lee J, Leung V, et al. Patterned electrical brain stimulation by a wireless network of implantable microdevices[J]. Nat Commun, 2024, 15(1): 10093. DOI: 10.1038/s41467-024-54542-1.
|
| [32] |
Ognard J, El Hajj G, Verma O, et al. Advances in endovascular brain computer interface: systematic review and future implications[J]. J Neurosci Methods, 2025, 420: 110471. DOI: 10.1016/j.jneumeth.2025.110471.
|
| [33] |
Bosking WH, Sun P, Ozker M, et al. Saturation in phosphene size with increasing current levels delivered to human visual cortex[J]. J Neurosci, 2017, 37(30): 7188-7197. DOI: 10.1523/jneurosci.2896-16.2017.
|
| [34] |
Anbarasan R, Gomez Carmona D, Mahendran R. Human taste-perception: Brain Computer Interface (BCI) and its application as an engineering tool for taste-driven sensory studies[J]. Food Eng Rev, 2022, 14: 408-434. DOI: 10.1007/s12393-022-09308-0.
|
| [35] |
da Cruz L, Dorn JD, Humayun MS, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial[J]. Ophthalmology, 2016, 123(10): 2248-2254. DOI: 10.1016/j.ophtha.2016.06.049.
|
| [36] |
Stingl K, Bartz-Schmidt KU, Besch D, et al. Subretinal visual implant Alpha IMS--clinical trial interim report[J]. Vision Res, 2015, 111(Pt B): 149-160. DOI: 10.1016/j.visres.2015.03.001.
|
| [37] |
Jorfi M, Skousen JL, Weder C, et al. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications[J]. J Neural Eng, 2015, 12(1): 011001. DOI: 10.1088/1741-2560/12/1/011001.
|
| [38] |
Goss-Varley M, Dona KR, McMahon JA, et al. Microelectrode implantation in motor cortex causes fine motor deficit: Implications on potential considerations to brain computer interfacing and human augmentation[J]. Sci Rep, 2017, 7(1): 15254. DOI: 10.1038/s41598-017-15623-y.
|
| [39] |
|