[1] |
Li C, Wu Z, Zhou L, et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury[J]. Signal Transduct Target Ther,2022,7(1):65.DOI:10.1038/s41392-022-00885-4.
|
[2] |
Ortega MA, Fraile - Martinez O, García - Montero C, et al. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities[J]. Mil Med Res, 2023, 10(1): 26. DOI: 10.1186/s40779-023-00461-z.
|
[3] |
Gong C, Zheng X, Guo F, et al. Human spinal gaba neurons alleviate spasticity and improve locomotion in rats with spinal cord injury[J]. Cell Rep, 2021, 34(12): 108889. DOI: 10.1016/j.celrep.2021.108889.
|
[4] |
Li L, Zhang Y, Mu J, et al. Transplantation of human mesenchymal stem -cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury[J].Nano Lett, 2020, 20(6): 4298-4305. DOI: 10.1021/acs.nanolett.0c00929.
|
[5] |
Xie C, Shen X, Xu X, et al. Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal cord injury[J]. J Neurosci, 2020, 40(13): 2644-2662. DOI: 10.1523/jneurosci.2229-19.2020.
|
[6] |
Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury[J].Nat Med,2017,23(7):818-828.DOI:10.1038/nm.4354.
|
[7] |
Cusimano M, Biziato D, Brambilla E, et al. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord[J]. Brain, 2012, 135(Pt 2):447-460.DOI:10.1093/brain/awr339.
|
[8] |
Zhang J, Li X, Guo L, et al. 3D hydrogel microfibers promote the differentiation of encapsulated neural stem cells and facilitate neuron protection and axon regrowth after complete transactional spinal cord injury[J]. Biofabrication, 2024, 16(3): 035015. DOI:10.1088/1758-5090/ad39a7.
|
[9] |
Ceto S, Sekiguchi KJ, Takashima Y, et al. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury[J]. Cell Stem Cell, 2020, 27(3): 430-440.e5.DOI:10.1016/j.stem.2020.07.007.
|
[10] |
Abematsu M, Tsujimura K, Yamano M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury[J]. J Clin Invest,2010,120(9):3255-3266.DOI:10.1172/jci42957.
|
[11] |
Curtis E, Martin JR, Gabel B, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury[J].Cell Stem Cell,2018,22(6):941-950.e6.DOI:10.1016/j.stem.2018.05.014.
|
[12] |
Daviaud N, Friedel RH, Zou H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex[J].eNeuro,2018,5(6): ENEURO.0219-18.2018.DOI:10.1523/eneuro.0219-18.2018.
|
[13] |
Xu C, Alameri A, Leong W, et al. Multiscale engineering of brain organoids for disease modeling[J]. Adv Drug Deliv Rev, 2024,210:115344.DOI:10.1016/j.addr.2024.115344.
|
[14] |
Wu Y, Cheng J, Qi J, et al. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids[J]. Nat Commun,2024,15(1):4047.DOI:10.1038/s41467-024-48452-5.
|
[15] |
Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature,2017,545(7652):54-59.DOI:10.1038/nature22330.
|
[16] |
Smits LM, Reinhardt L, Reinhardt P, et al. Modeling Parkinson's disease in midbrain-like organoids[J]. NPJ Parkinsons Dis, 2019,5:5.DOI:10.1038/s41531-019-0078-4.
|
[17] |
Zheng X, Han D, Liu W, et al. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson ' s disease[J].Theranostics,2023,13(8):2673-2692.DOI:10.7150/thno.80271.
|
[18] |
Xiang Y, Tanaka Y, Cakir B, et al. hESC - derived thalamic organoids form reciprocal projections when fused with cortical organoids[J]. Cell Stem Cell, 2019, 24(3): 487-497.e7. DOI: 10.1016/j.stem.2018.12.015.
|
[19] |
Huang WK, Wong SZH, Pather SR, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J].Cell Stem Cell,2021,28(9):1670.e10.DOI:10.1016/j.stem.2021.04.006.
|
[20] |
Lee JH, Shin H, Shaker MR, et al. Production of human spinalcord organoids recapitulating neural-tube morphogenesis[J]. Nat Biomed Eng, 2022, 6(4): 435-448. DOI: 10.1038/s41551-022-00868-4.
|
[21] |
Xu J, Fang S, Deng S, et al. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes[J]. Nat Biomed Eng, 2023, 7(3): 253-269. DOI: 10.1038/s41551-022-00963-6.
|
[22] |
Miura Y, Li MY, Birey F, et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells[J]. Nat Biotechnol, 2020, 38(12): 1421-1430. DOI: 10.1038/s41587-020-00763-w.
|
[23] |
Reumann D, Krauditsch C, Novatchkova M, et al. In vitro modeling of the human dopaminergic system using spatially arranged ventral midbrain-striatum-cortex assembloids[J]. Nat Methods, 2023, 20(12): 2034-2047. DOI: 10.1038/s41592-023-02080-x.
|
[24] |
Atamian A, Birtele M, Hosseini N, et al. Human cerebellar organoids with functional purkinje cells[J]. Cell Stem Cell, 2024,31(1):39-51.e6.DOI:10.1016/j.stem.2023.11.013.
|
[25] |
Schafer ST, Mansour AA, Schlachetzki JCM, et al. An in vivo neuroimmune organoid model to study human microglia phenotypes[J].Cell,2023,186(10):2111-2126.e20.DOI:10.1016/j.cell.2023.04.022.
|
[26] |
Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.DOI:10.1016/j.stem.2016.07.005.
|
[27] |
Chen X, Sun G, Tian E, et al. Modeling sporadic Alzheimer's disease in human brain organoids under serum exposure[J]. Adv Sci(Weinh),2021,8(18):e2101462.DOI:10.1002/advs.202101462.
|
[28] |
Bolognin S, Fossépré M, Qing X, et al. 3D cultures of Parkinson's disease - specific dopaminergic neurons for high content phenotyping and drug testing[J]. Adv Sci (Weinh), 2019, 6(1):1800927.DOI:10.1002/advs.201800927.
|
[29] |
Park JC, Jang SY, Lee D, et al. A logical network-based drugscreening platform for Alzheimer's disease representing pathological features of human brain organoids[J]. Nat Commun, 2021, 12(1):280.DOI:10.1038/s41467-020-20440-5.
|
[30] |
Martínez-Cerdeño V, Noctor SC, Espinosa A, et al. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats[J]. Cell Stem Cell,2010,6(3):238-250.DOI:10.1016/j.stem.2010.01.004.
|
[31] |
Wang SN, Wang Z, Xu TY, et al. Cerebral organoids repair ischemic stroke brain injury[J]. Transl Stroke Res, 2020, 11(5):983-1000.DOI:10.1007/s12975-019-00773-0.
|
[32] |
Bergmann S, Lawler SE, Qu Y, et al. Blood - brain - barrier organoids for investigating the permeability of CNS therapeutics[J]. Nat Protoc, 2018, 13(12): 2827-2843. DOI: 10.1038/s41596-018-0066-x.
|
[33] |
Anderson MA, O'Shea TM, Burda JE, et al. Required growth facilitators propel axon regeneration across complete spinal cord injury[J]. Nature, 2018, 561(7723): 396-400. DOI: 10.1038/s41586-018-0467-6.
|
[34] |
Bao Z, Fang K, Miao Z, et al. Human cerebral organoid implantation alleviated the neurological deficits of traumatic brain injury in mice[J]. Oxid Med Cell Longev, 2021, 2021: 6338722.DOI:10.1155/2021/6338722.
|
[35] |
Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation[J]. Mol Psychiatry, 2021, 26(7): 2964-2976. DOI:10.1038/s41380-020-00910-4.
|
[36] |
Fandel TM, Trivedi A, Nicholas CR, et al. Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury[J]. Cell Stem Cell, 2016, 19(4): 544-557. DOI: 10.1016/j.stem.2016.08.020.
|
[37] |
Wang Z, Zhao H, Tang X, et al. CNS organoid surpasses cellladen microgel assembly to promote spinal cord injury repair[J].Research (Wash D C), 2022, 2022: 9832128. DOI: 10.34133/2022/9832128.
|
[38] |
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances[J]. Brain, 2024, 147(3): 766-793.DOI:10.1093/brain/awad392.
|
[39] |
Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol,2018,36(5):432-441.DOI:10.1038/nbt.4127.
|
[40] |
Park DS, Kozaki T, Tiwari SK, et al. iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer[J].Nature, 2023, 623(7986): 397-405. DOI: 10.1038/s41586-023-06713-1.
|
[41] |
Popova G, Soliman SS, Kim CN, et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids[J]. Cell Stem Cell, 2021, 28(12):2153-2166.e6.DOI:10.1016/j.stem.2021.08.015.
|
[42] |
Andersen J, Revah O, Miura Y, et al. Generation of functional human 3D cortico-motor assembloids[J].Cell,2020,183(7):1913-1929.e26.DOI:10.1016/j.cell.2020.11.017.
|
[43] |
Revah O, Gore F, Kelley KW, et al. Maturation and circuit integration of transplanted human cortical organoids[J]. Nature,2022,610(7931):319-326.DOI:10.1038/s41586-022-05277-w.
|