| [1] |  | 
																													
																							| [2] |  | 
																													
																							| [3] | Awad IA, Polster SP , Carrión-Penagos J , et al. Surgical performance determines functional outcome benefit in the minimally invasive surgery plus recombinant tissue plasminogen activator for intracerebral hemorrhage evacuation (MISTIE) procedure[J]. Neurosurgery , 2019 , 84 (6): 1157-1168. DOI: 10.1093/neuros/nyz077 . | 
																													
																							| [4] | Alan N, Lee P , Ozpinar A , et al. Robotic stereotactic assistance (ROSA) utilization for minimally invasive placement of intraparenchymal hematoma and intraventricular catheters[J]. World Neurosurg , 2017 , 108 : 996.e7-996.e10. DOI: 10.1016/j.wneu.2017.09.027 . | 
																													
																							| [5] | Wang T, Zhao QJ , Gu JW , et al. Neurosurgery medical robot Remebot for the treatment of 17 patients with hypertensive intracerebral hemorrhage[J]. Int J Med Robot , 2019 , 15 (5): e2024. DOI: 10.1002/rcs.2024 . | 
																													
																							| [6] |  | 
																													
																							| [7] |  | 
																													
																							| [8] | Kellner CP, Song R , Pan J , et al. Long-term functional outcome following minimally invasive endoscopic intracerebral hemorrhage evacuation[J]. J Neurointerv Surg , 2020 , 12 (5): 489-494. DOI: 10.1136/neurintsurg-2019-015528 . | 
																													
																							| [9] | Guo W, Liu H , Tan Z , et al. Comparison of endoscopic evacuation, stereotactic aspiration, and craniotomy for treatment of basal ganglia hemorrhage[J]. J Neurointerv Surg , 2020 , 12 (1): 55-61. DOI: 10.1136/neurintsurg-2019-014962 . | 
																													
																							| [10] | Zhao Z, Xiao J , Wang J , et al. Individualized CT image-guided free-hand catheter technique: a new and reliable method for minimally invasive evacuation of basal ganglia hematoma[J]. Front Neurosci , 2022 , 16 : 947282. DOI: 10.3389/fnins.2022.947282 . | 
																													
																							| [11] |  | 
																													
																							| [12] |  | 
																													
																							| [13] | Xiong R, Li F , Chen X . Robot-assisted neurosurgery versus conventional treatment for intracerebral hemorrhage: a systematic review and meta-analysis[J]. J Clin Neurosci , 2020 , 82 (Pt B): 252-259. DOI: 10.1016/j.jocn.2020.10.045 . | 
																													
																							| [14] | Mosteiro A, Amaro S , Torné R , et al. Minimally invasive surgery for spontaneous intracerebral hematoma. Real-life implementation model and economic estimation[J]. Front Neurol , 2022 , 13 : 884157. DOI: 10.3389/fneur.2022.884157 . | 
																													
																							| [15] | 胡思梦,任磊豪,华领洋,等.自发性脑出血微创手术治疗的卫生经济学评价——基于真实世界数据的多中心研究[J].中国临床神经科学, 2022, 30(2): 158-167. | 
																													
																							| [16] | 于健君.社区康复治疗对脑卒中患者功能、经济学分析及危险因子影响的研究[D].上海:复旦大学, 2008. | 
																													
																							| [17] | Aviv RI, Kelly AG , Jahromi BS , et al. The cost-utility of CT angiography and conventional angiography for people presenting with intracerebral hemorrhage[J]. PLoS One , 2014 , 9 (5): e96496. DOI: 10.1371/journal.pone.0096496 . | 
																													
																							| [18] | Arora N, Makino K , Tilden D , et al. Cost-effectiveness of mechanical thrombectomy for acute ischemic stroke: an Australian payer perspective[J]. J Med Econ , 2018 , 21 (8): 799-809. DOI: 10.1080/13696998.2018.1474746 . | 
																													
																							| [19] | Sun H, Liu H , Li D , et al. An effective treatment for cerebral hemorrhage: minimally invasive craniopuncture combined with urokinase infusion therapy[J]. Neurol Res , 2010 , 32 (4): 371-377. DOI: 10.1179/016164110X12670144526147 . | 
																													
																							| [20] |  | 
																													
																							| [21] | Polster SP, Carrión-Penagos J , Lyne SB , et al. Intracerebral hemorrhage volume reduction and timing of intervention versus functional benefit and survival in the MISTIE III and STICH trials[J]. Neurosurgery , 2021 , 88 (5): 961-970. DOI: 10.1093/neuros/nyaa572 . | 
																													
																							| [22] | Hansen BM, Ullman N , Muschelli J , et al. Relationship of white matter lesions with intracerebral hemorrhage expansion and functional outcome: MISTIE II and CLEAR III[J]. Neurocrit Care , 2020 , 33 (2): 516-524. DOI: 10.1007/s12028-020-00916-4 . | 
																													
																							| [23] | Sirh S, Park HR . Optimal surgical timing of aspiration for spontaneous supratentorial intracerebral hemorrhage[J]. J Cerebrovasc Endovasc Neurosurg , 2018 , 20 (2): 96-105. DOI: 10.7461/jcen.2018.20.2.96 . | 
																													
																							| [24] | Scaggiante J, Zhang X , Mocco J , et al. Minimally invasive surgery for intracerebral hemorrhage[J]. Stroke , 2018 , 49 (11): 2612-2620. DOI: 10.1161/STROKEAHA.118.020688 . | 
																													
																							| [25] | de Havenon A, Joyce E , Yaghi S , et al. End-of-treatment intracerebral and ventricular hemorrhage volume predicts outcome: a secondary analysis of MISTIE III[J]. Stroke , 2020 , 51 (2): 652-654. DOI: 10.1161/STROKEAHA.119.028199 . | 
																													
																							| [26] | Liu H, Wu X , Tan Z , et al. Long-term effect of endoscopic evacuation for large basal ganglia hemorrhage with GCS Scores ≦ 8[J]. Front Neurol , 2020 , 11 : 848. DOI: 10.3389/fneur.2020.00848 . | 
																													
																							| [27] |  | 
																													
																							| [28] | Al-Kawaz MN, Li Y , Thompson RE , et al. Intracranial pressure and cerebral perfusion pressure in large spontaneous intracranial hemorrhage and impact of minimally invasive surgery[J]. Front Neurol , 2021 , 12 : 729831. DOI: 10.3389/fneur.2021.729831 . |