切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2017, Vol. 07 ›› Issue (02) : 99 -102. doi: 10.3877/cma.j.issn.2095-123X.2017.02.012

所属专题: 文献

综述

不同种类RNA与脑出血关系的研究
范亚男1, 张敬军1,()   
  1. 1. 271000 山东泰安,泰安医学院
  • 收稿日期:2016-10-10 出版日期:2017-04-01
  • 通信作者: 张敬军

Research on the relationship between different types of RNA and intracerebral hemorrhage

Yanan Fan1, Jingjun Zhang1,()   

  1. 1. Taishan Medical School, Tai′an 271000, China
  • Received:2016-10-10 Published:2017-04-01
  • Corresponding author: Jingjun Zhang
  • About author:
    Corresponding author: Zhang JingJun, Email:
引用本文:

范亚男, 张敬军. 不同种类RNA与脑出血关系的研究[J]. 中华脑科疾病与康复杂志(电子版), 2017, 07(02): 99-102.

Yanan Fan, Jingjun Zhang. Research on the relationship between different types of RNA and intracerebral hemorrhage[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2017, 07(02): 99-102.

脑出血发病机制复杂,不同种类的RNA与脑出血的关系是国内外研究的热点之一。本文综述不同种类RNA与脑出血的关系,探讨不同种类RNA可能作用的靶向基因、信号转导通路和代谢途径,为脑出血早期防治提供新的理论依据。

The pathogenesis of intracerebral hemorrhage is very complex. There are some relationships between different types of RNA and intracerebral hemorrhage, which is one of the hot spots in the world . This article reviews the relationship between different types of RNA and cerebral hemorrhage and objective to investigate the possible target genes, signal transduction pathways and metabolic pathways of different kinds of RNA.This will provide a new theoretical basis for early prevention and treatment of cerebral hemorrhage.

[20]
Wang PL, Bao Y, Yee MC, et al. Circular RNA is expressed across the eukaryotic tree of life[J]. PLoS One,2014, 9(3): e90859.
[21]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J].RNA, 2013, 19(2): 141-157.
[22]
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J] .PLoS One, 2012, 7(2):e30733.
[23]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature, 2013, 495(7441): 333-338.
[24]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs [J].Mol Cell, 2013, 51(6): 792-806.
[25]
Lasda E, Parker R. Circular RNAs: diversity of form and function[J]. RNA. 2014, 20(12): 1829-1842.
[26]
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression[J].PLoS Genet, 2013,9(9): e1003777.
[27]
Li Z, Huang C, Bao C, et al. Exon-Intron circular RNAs regulate transcription in the nucleus[J].Nat Struct Mol Biol, 2015, 22(3): 256-264.
[28]
Ashwal-Fluss R, Meyer M, Pamudurti NR,et al.circRNA biogenesis competes with pre-mRNA splicing[J].Mol Cell,2014,56(1): 55-66.
[1]
Zhou L, Deng L, Chang NB,et al.Cell apoptosis and proliferation in rat brains after intracerebral hemorrhage: role of Wnt/β-catenin signaling pathway[J]. Turk J Med Sci,2014,44(6):920.
[2]
Jin X, Sun Y, Xu J,et al.Caveolin-1 mediates tissue plasminogen activator-induce MMP-9 up-regulation in cultured brain microvascular enditheliai cells[J].Neurochem,2015,132(6):724-730.
[3]
Zeng Z, Liu H, Jiang D. NRH2 induces cell apoptosis of cerebral tissues around hematomas after intracerebral hemorrhage through up-regulating proNGF, sortilin and p75NTR expressions[J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2015,31(4):532-536,539.
[4]
Song YQ, Zou HL, Zhao YJ,et al.Activation of p38-mitogen-activated protein kinase contributes to ischemia reperfusion in rat brain[J].Genet Mol Res,2016,15(3):321-326.
[5]
Liu DL, Zhao LX, Zhang S,et al.Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage[J].Int Immunopharmacol,2016,41(8):82-89.
[6]
Xu C, Wang T, Cheng S,et al. Increased expression of T cell immunoglobulin and mucin domain 3 aggravates brain inflammation via regulation of the function of microglia/macrophages after intracerebral hemorrhage in mice[J]. Neuro inflammation, 2013,10(9):141-145.
[7]
Reczko M, Maragkakis M, Aleciou P, et al. Functional microRNA targets in protein coding sequences[J].Bioinformatics, 2012,28(6):771-776.
[8]
Wei JW, Heeley EL, Wang JG, et al. Comparison of recovery patterns and prognostic indicators for ischemic and hemorrhagic stroke in China: the China QUEST (Quality Evaluation of Stroke Care and Treatment)Registy study[J].Stroke,2010,41(9):1877-1883.
[9]
Weng H, Shen C, Hirokawa G, et al. Plasma miR-124 as a biomarker for cerebral infarction [J]. Biomed Res, 2011,32(2) :135-141.
[10]
Zhu Y, Wang JL, He ZY,et al. Association of Altered Serum MicroRNAs with Perihematomal Edema after Acute Intracerebral Hemorrhage[J]. PLoS One,2015,10(7):e0133783.
[11]
Yang Z, Zhong L, Xian R,et al.MicroRNA-223 regulates inflammation and biain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage[J].Mol lommunol,2015,65(2):267-276.
[12]
Geisler C, Lojek L, Khalil AM,et al. Decapping of long noncoding RNAs regulates inducible genes[J]. Mol Cell,2012,45(3): 279-291.
[13]
Schaukowitch K, Kim TK.Emerging epigenetic mechanisms of long non-coding RNAs [J]. Neuroscience, 2014,264(2): 25-38.
[14]
Kurihara M, Shiraishi A, Satake H,et al. A conserved noncodings equence can function as a spermatocyte-specific enhancer and a bidirectional promoter for a ubiquitously expressed gene and a testis-specific long non-coding RNA [J].J Mol Biol, 2014,426(17): 3069-3093.
[15]
Batisa PJ, Chang HY.Long non-coding RNAs:cellular address codes in development and disease [J].Cell,2013,152(6):1298-1307.
[16]
Motterle A, Pu X, Wood H,et al.Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells[J]. HumMol Genet, 2012, 21(18): 4021-4029.
[17]
Holdt LM, Teupser D.Recent studies of the human chromosome 9p21 locus,which is associated with atherosclerosis inhuman populations[J].Arterioscler Thromb Vasc Biol,2012,32(2):196-206.
[18]
Li H, Zhu H, Ge J.Long Noncoding RNA: Recent Updates in Atherosclerosis[J]. Int J Biol Sci.2016,12(7):898-910.
[19]
Shan K, Jiang Q, Wang XQ,et al.Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction[J].Cell Death Dis,2016,7(2):e2248.
[29]
William RJ, Norman ES.Detecting and characterizing circular RNAs[J].Nat Biotechnol,2014,32(5): 453-461.
[30]
Holdt LM, Stahringer A, Sass K,et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J].Nat Commun,2016,7(2):e12429.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[3] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[4] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[5] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[6] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[7] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[8] 韦维, 李忠华, 黄礼德. 机器人辅助第四脑室血肿穿刺抽吸外引流术[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 255-256.
[9] 陈显金, 吴芹芹, 何长春, 张庆华. 利用多模态医学数据和机器学习构建脑出血预后预测模型的研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 193-198.
[10] 谭可, 李锦平, 彭玉涛, 吴文汧, 杨子文, 汪阳, 陶立波, 刘畅. 机器人辅助立体定向血肿引流术治疗自发性脑出血疗效及卫生经济学评价[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 205-214.
[11] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[12] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[13] 丁晶, 李培雯, 许迎春. 醒脑开窍针刺法在神经急重症中的应用[J]. 中华针灸电子杂志, 2023, 12(04): 161-164.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要