切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 176 -180. doi: 10.3877/cma.j.issn.2095-123X.2019.03.012

所属专题: 文献

综述

糖尿病周围神经病相关发病机制研究进展
黄海伦1, 吴珊2,()   
  1. 1. 550004 贵阳,贵州医科大学神经病学教研室
    2. 550004 贵阳,贵州医科大学附属医院神经内科
  • 收稿日期:2019-05-19 出版日期:2019-06-15
  • 通信作者: 吴珊
  • 基金资助:
    贵州省科技合作计划项目(黔科合LH字(2015)7407)

Research progress on the pathogenesis of diabetic peripheral neuropathy

Hailun Huang1, Shan Wu2,()   

  1. 1. Department of Neurology, Guizhou Medical University, Guiyang 550004, China
    2. Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
  • Received:2019-05-19 Published:2019-06-15
  • Corresponding author: Shan Wu
  • About author:
    Corresponding author: Wu Shan, Email:
引用本文:

黄海伦, 吴珊. 糖尿病周围神经病相关发病机制研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(03): 176-180.

Hailun Huang, Shan Wu. Research progress on the pathogenesis of diabetic peripheral neuropathy[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(03): 176-180.

糖尿病周围神经病(DPN)作为糖尿病最常见的并发症,一定程度上表现为周围神经功能障碍,影响患者的生活质量。基于近年来国内外对DPN相关发病机制的研究,本文主要围绕DPN在代谢、免疫、基因、降糖药等方面的相关发病机制展开综述,为今后DPN的机制研究与治疗提供思路。

Diabetic peripheral neuropathy (DPN), as the most common complication of diabetes mellitus, is manifested in peripheral nerve dysfunction to a certain extent, affecting the quality of life of patients. Based on the research on the pathogenesis of DPN at home and abroad in recent years, this paper reviews the pathogenesis of DPN in the aspects of metabolism, immunity, genes and hypoglycemic drugs, so as to provide ideas for the research and treatment of DPN mechanism in the future.

[1]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98.
[2]
Shen X, Vaidya A, Wu S, et al. The diabetes epidemic in China: an integrated review of national surveys[J]. Endocr Pract, 2016, 22(9): 1119-1129.
[3]
Sztanek F, Molnárné Molnár á, Balogh Z. The role of oxidative stress in the development of diabetic neuropathy[J]. Orv Hetil, 2016, 157(49): 1939-1946.
[4]
Ferland-McCollough D, Slater S, Richard J, et al. Pericytes, an overlooked player in vascular pathobiology[J]. Pharmacol Ther, 2017, 171: 30-42.
[5]
施丽丽,任明山,吴元洁,等.线粒体分裂蛋白Drp-1参与糖尿病周围神经病发病的机制[J].中华医学杂志, 2012, 92(21): 1502-1504.
[6]
Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives[J]. Oxid Med Cell Longev, 2013, 2013: 168039.
[7]
de la Hoz CL, Cheng C, Fernyhough P, et al. A model of chronic diabetic polyneuropathy: benefits from intranasal insulin are modified by sex and RAGE deletion[J]. Am J Physiol Endocrinol Metab, 2017, 312(5): E407-E419.
[8]
Saleh A, Smith DR, Tessler L, et al. Receptor for advanced glycation end-product(sRAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons[J]. Exp Neurol, 2013, 249: 149-159.
[9]
Jamwal S, Sharma S. Vascular endothelium dysfunction: a conservative target in metabolic disorders[J]. Inflamm Res, 2018, 67(5): 391-405.
[10]
Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome[J]. J Diabetes Investig, 2017, 8(5): 646-655.
[11]
施丽丽,任明山,吴元洁.糖尿病周围神经病变与氧化应激研究现状[J].安徽医科大学学报, 2012, 47(1): 94-96.
[12]
秦宏超,张真稳. 2型糖尿病周围神经病变患者外周血CD4+调节性T细胞与25-(OH)D3的关系及其意义[J].中国现代医学杂志, 2018, 28(18): 45-49.
[13]
董荣芳,张铭,郑丹枫,等.糖尿病周围神经病的病理学研究[J].诊断病理学杂志, 2015, 22(3): 133-138.
[14]
Rachana KS, Manu MS, Advirao GM. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy[J]. Neurosci Lett, 2016, 629: 110-115.
[15]
Tang W, Lv Q, Zou JJ, et al. CD8(+) T cell-mediated cytotoxicity toward Schwann cells promotes diabetic peripheral neuropathy[J]. Cell Physiol Biochem, 2013, 32(4): 827-837.
[16]
Hong J, Tobin NP, Rundqvist H, et al. Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells[J]. J Natl Cancer Inst, 2015, 107(10): pii djv209.
[17]
Sohail MU, Asmaa A, Haseeb A, et al. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus[J]. J Diabetes Res, 2017, 2017: 9631435.
[18]
Oellgaard J, Winther SA, Hansen TS, et al. Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer[J]. Curr Pharm Des, 2017, 23(25): 3699-3712.
[19]
Perez-Matos MC, Morales-Alvarez MC, Mendivil CO. Lipids: a suitable therapeutic target in diabetic neuropathy?[J]. J Diabetes Res, 2017, 2017: 6943851.
[20]
陈致瑜,刘率男,刘泉,等.阿托伐他汀对糖耐量异常KKAy小鼠胰岛功能的影响及初步机制探讨[J].中国临床药理学杂志, 2014, 30(9): 783-787.
[21]
张春雪,王燕,郑晓岩,等.二甲双胍对2型糖尿病大鼠胆固醇代谢途径的影响[J].中国老年学杂志, 2017, 37(21): 5238-5240.
[22]
El-Horany HE, Watany MM, Hagag RY, et al. Expression of LRP1 and CHOP genes associated with peripheral neuropathy in type 2 diabetes mellitus: correlations with nerve conduction studies[J]. Gene, 2019, 702: 114-122.
[23]
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury[J]. Prog Neurobiol, 2019, 173: 102-121.
[24]
Wang X, Chen Q, Yi S, et al. The microRNAs let-7 and miR-9 down-regulate the axon-guidance genes Ntn1 and Dcc during peripheral nerve regeneration[J]. J Biol Chem, 2019, 294(10): 3489-3500.
[25]
Cheng C, Kobayashi M, Martinez JA, et al. Evidence for epigenetic regulation of gene expression and function in chronic experimental diabetic neuropathy[J]. J Neuropathol Exp Neurol, 2015, 74(8): 804-817.
[26]
Liu XS, Fan B, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J]. Diabetes, 2017, 66(12): 3111-3121.
[27]
Zhang Y, Song C, Liu J, et al. Inhibition of miR-25 aggravates diabetic peripheral neuropathy[J]. Neuroreport, 2018, 29(11): 945-953.
[28]
Chang YS, Kan HW, Hsieh YL. Activating transcription factor 3 modulates protein kinase C epsilon activation in diabetic peripheral neuropathy[J]. J Pain Res, 2019, 12: 317-326.
[29]
Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial[J]. Lancet, 2010, 376(9739): 419-430.
[30]
Sahin M, Tutuncu NB, Ertugrul D, et al. Effects of metformin or rosiglitazone on serum concentrations of homocysteine, folate, and vitamin B12 in patients with type 2 diabetes mellitus[J]. J Diabetes Complications, 2007, 21(2): 118-123.
[31]
王军文,史耐云,陈卫.巨幼细胞贫血伴随维生素B12和(或)叶酸增高的诊断分析[J].国际检验医学杂志, 2013, 34(4): 510.
[32]
Gupta K, Jain N, Rohatgi A. An observational study of vitamin B12 levels and peripheral neuropathy profile in patients of diabetes mellitus on metformin therapy[J]. Diabetes Metab Syndr, 2018, 12(1): 51-58.
[33]
Jayabalan B, Low LL. Vitamin B supplementation for diabetic peripheral neuropathy[J]. S Singapore Med J, 2016, 57(2): 55-59.
[34]
孙丽艳,赵蒙,殷宏宇,等.两种降糖方式对糖尿病周围神经病患者F波的影响及意义[J].中国实验诊断学, 2017, 21(5): 810-813.
[35]
Gerbi A, Maixent JM, Ansaldi JL, et al. Fish oil supplementation prevents diabetes-induced nerve conduction velocity and neuroanatomical changes in rats[J]. J Nutr, 1999, 129(1): 207-213.
[36]
Shy ME, Frohman EM, So YT, et al. Quantitative sensory testing: report of the therapeutics and technology assessment subcommittee of the American academy of neurology[J]. Neurology, 2003, 60(6): 898-904.
[37]
潘映辐.临床诱发电位学[M].第2版.北京:人民卫生出版社, 2000: 165-168.
[38]
American Diabetes Association. Diabetes advocacy: standards of medical care in diabetes-2019[J]. Diabetes Care, 2019, 42(Suppl 1): S182-S183.
[39]
Ozaki K, Yamano S, Matsuura T, et al. Insulin-ameliorated peripheral motor neuropathy in spontaneously diabetic WBN/Kob rats[J]. J Vet Med Sci, 2013, 75(10): 1323-1328.
[40]
Dandona P, Mohanty P, Chaudhuri A, et al. Insulin infusion in acute illness[J]. J Clin Invest, 2005, 115(8): 2069-2072.
[41]
Koike H, Takahashi M, Ohyama K, et al. Clinicopathologic features of folate-deficiency neuropathy[J]. Neurology, 2015, 84(10): 1026-1033.
[42]
Mottaghi T, Khorvash F, Maracy M, et al. Effect of folic acid supplementation on nerve conduction velocity in diabetic polyneuropathy patients[J]. Neurol Res, 2019, 41(4): 364-368.
[43]
Meng X, Maurel P, Lam I, et al. Necl-4/Cadm4 recruits Par-3 to the Schwann cell adaxonal membrane[J]. Glia, 2019, 67(5): 884-895.
[44]
Hellweg R, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy[J]. J Neurosci Res, 1990, 26(2): 258-267.
[45]
Cheng HT, Dauch JR, Hayes JM, et al. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes[J]. Neurobiol Dis, 2012, 45(1): 280-287.
[1] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[2] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[3] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[4] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[7] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[8] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[9] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[10] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[11] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[12] 杨镠, 秦岚群, 耿茜, 李栋庆, 戚春建, 蒋华. 可溶性免疫检查点对胃癌患者免疫治疗疗效和预后的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 305-311.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要