切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 176 -180. doi: 10.3877/cma.j.issn.2095-123X.2019.03.012

所属专题: 文献

综述

糖尿病周围神经病相关发病机制研究进展
黄海伦1, 吴珊2,()   
  1. 1. 550004 贵阳,贵州医科大学神经病学教研室
    2. 550004 贵阳,贵州医科大学附属医院神经内科
  • 收稿日期:2019-05-19 出版日期:2019-06-15
  • 通信作者: 吴珊
  • 基金资助:
    贵州省科技合作计划项目(黔科合LH字(2015)7407)

Research progress on the pathogenesis of diabetic peripheral neuropathy

Hailun Huang1, Shan Wu2,()   

  1. 1. Department of Neurology, Guizhou Medical University, Guiyang 550004, China
    2. Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
  • Received:2019-05-19 Published:2019-06-15
  • Corresponding author: Shan Wu
  • About author:
    Corresponding author: Wu Shan, Email:
引用本文:

黄海伦, 吴珊. 糖尿病周围神经病相关发病机制研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(03): 176-180.

Hailun Huang, Shan Wu. Research progress on the pathogenesis of diabetic peripheral neuropathy[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(03): 176-180.

糖尿病周围神经病(DPN)作为糖尿病最常见的并发症,一定程度上表现为周围神经功能障碍,影响患者的生活质量。基于近年来国内外对DPN相关发病机制的研究,本文主要围绕DPN在代谢、免疫、基因、降糖药等方面的相关发病机制展开综述,为今后DPN的机制研究与治疗提供思路。

Diabetic peripheral neuropathy (DPN), as the most common complication of diabetes mellitus, is manifested in peripheral nerve dysfunction to a certain extent, affecting the quality of life of patients. Based on the research on the pathogenesis of DPN at home and abroad in recent years, this paper reviews the pathogenesis of DPN in the aspects of metabolism, immunity, genes and hypoglycemic drugs, so as to provide ideas for the research and treatment of DPN mechanism in the future.

[1]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98.
[2]
Shen X, Vaidya A, Wu S, et al. The diabetes epidemic in China: an integrated review of national surveys[J]. Endocr Pract, 2016, 22(9): 1119-1129.
[3]
Sztanek F, Molnárné Molnár á, Balogh Z. The role of oxidative stress in the development of diabetic neuropathy[J]. Orv Hetil, 2016, 157(49): 1939-1946.
[4]
Ferland-McCollough D, Slater S, Richard J, et al. Pericytes, an overlooked player in vascular pathobiology[J]. Pharmacol Ther, 2017, 171: 30-42.
[5]
施丽丽,任明山,吴元洁,等.线粒体分裂蛋白Drp-1参与糖尿病周围神经病发病的机制[J].中华医学杂志, 2012, 92(21): 1502-1504.
[6]
Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives[J]. Oxid Med Cell Longev, 2013, 2013: 168039.
[7]
de la Hoz CL, Cheng C, Fernyhough P, et al. A model of chronic diabetic polyneuropathy: benefits from intranasal insulin are modified by sex and RAGE deletion[J]. Am J Physiol Endocrinol Metab, 2017, 312(5): E407-E419.
[8]
Saleh A, Smith DR, Tessler L, et al. Receptor for advanced glycation end-product(sRAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons[J]. Exp Neurol, 2013, 249: 149-159.
[9]
Jamwal S, Sharma S. Vascular endothelium dysfunction: a conservative target in metabolic disorders[J]. Inflamm Res, 2018, 67(5): 391-405.
[10]
Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome[J]. J Diabetes Investig, 2017, 8(5): 646-655.
[11]
施丽丽,任明山,吴元洁.糖尿病周围神经病变与氧化应激研究现状[J].安徽医科大学学报, 2012, 47(1): 94-96.
[12]
秦宏超,张真稳. 2型糖尿病周围神经病变患者外周血CD4+调节性T细胞与25-(OH)D3的关系及其意义[J].中国现代医学杂志, 2018, 28(18): 45-49.
[13]
董荣芳,张铭,郑丹枫,等.糖尿病周围神经病的病理学研究[J].诊断病理学杂志, 2015, 22(3): 133-138.
[14]
Rachana KS, Manu MS, Advirao GM. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy[J]. Neurosci Lett, 2016, 629: 110-115.
[15]
Tang W, Lv Q, Zou JJ, et al. CD8(+) T cell-mediated cytotoxicity toward Schwann cells promotes diabetic peripheral neuropathy[J]. Cell Physiol Biochem, 2013, 32(4): 827-837.
[16]
Hong J, Tobin NP, Rundqvist H, et al. Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells[J]. J Natl Cancer Inst, 2015, 107(10): pii djv209.
[17]
Sohail MU, Asmaa A, Haseeb A, et al. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus[J]. J Diabetes Res, 2017, 2017: 9631435.
[18]
Oellgaard J, Winther SA, Hansen TS, et al. Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer[J]. Curr Pharm Des, 2017, 23(25): 3699-3712.
[19]
Perez-Matos MC, Morales-Alvarez MC, Mendivil CO. Lipids: a suitable therapeutic target in diabetic neuropathy?[J]. J Diabetes Res, 2017, 2017: 6943851.
[20]
陈致瑜,刘率男,刘泉,等.阿托伐他汀对糖耐量异常KKAy小鼠胰岛功能的影响及初步机制探讨[J].中国临床药理学杂志, 2014, 30(9): 783-787.
[21]
张春雪,王燕,郑晓岩,等.二甲双胍对2型糖尿病大鼠胆固醇代谢途径的影响[J].中国老年学杂志, 2017, 37(21): 5238-5240.
[22]
El-Horany HE, Watany MM, Hagag RY, et al. Expression of LRP1 and CHOP genes associated with peripheral neuropathy in type 2 diabetes mellitus: correlations with nerve conduction studies[J]. Gene, 2019, 702: 114-122.
[23]
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury[J]. Prog Neurobiol, 2019, 173: 102-121.
[24]
Wang X, Chen Q, Yi S, et al. The microRNAs let-7 and miR-9 down-regulate the axon-guidance genes Ntn1 and Dcc during peripheral nerve regeneration[J]. J Biol Chem, 2019, 294(10): 3489-3500.
[25]
Cheng C, Kobayashi M, Martinez JA, et al. Evidence for epigenetic regulation of gene expression and function in chronic experimental diabetic neuropathy[J]. J Neuropathol Exp Neurol, 2015, 74(8): 804-817.
[26]
Liu XS, Fan B, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J]. Diabetes, 2017, 66(12): 3111-3121.
[27]
Zhang Y, Song C, Liu J, et al. Inhibition of miR-25 aggravates diabetic peripheral neuropathy[J]. Neuroreport, 2018, 29(11): 945-953.
[28]
Chang YS, Kan HW, Hsieh YL. Activating transcription factor 3 modulates protein kinase C epsilon activation in diabetic peripheral neuropathy[J]. J Pain Res, 2019, 12: 317-326.
[29]
Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial[J]. Lancet, 2010, 376(9739): 419-430.
[30]
Sahin M, Tutuncu NB, Ertugrul D, et al. Effects of metformin or rosiglitazone on serum concentrations of homocysteine, folate, and vitamin B12 in patients with type 2 diabetes mellitus[J]. J Diabetes Complications, 2007, 21(2): 118-123.
[31]
王军文,史耐云,陈卫.巨幼细胞贫血伴随维生素B12和(或)叶酸增高的诊断分析[J].国际检验医学杂志, 2013, 34(4): 510.
[32]
Gupta K, Jain N, Rohatgi A. An observational study of vitamin B12 levels and peripheral neuropathy profile in patients of diabetes mellitus on metformin therapy[J]. Diabetes Metab Syndr, 2018, 12(1): 51-58.
[33]
Jayabalan B, Low LL. Vitamin B supplementation for diabetic peripheral neuropathy[J]. S Singapore Med J, 2016, 57(2): 55-59.
[34]
孙丽艳,赵蒙,殷宏宇,等.两种降糖方式对糖尿病周围神经病患者F波的影响及意义[J].中国实验诊断学, 2017, 21(5): 810-813.
[35]
Gerbi A, Maixent JM, Ansaldi JL, et al. Fish oil supplementation prevents diabetes-induced nerve conduction velocity and neuroanatomical changes in rats[J]. J Nutr, 1999, 129(1): 207-213.
[36]
Shy ME, Frohman EM, So YT, et al. Quantitative sensory testing: report of the therapeutics and technology assessment subcommittee of the American academy of neurology[J]. Neurology, 2003, 60(6): 898-904.
[37]
潘映辐.临床诱发电位学[M].第2版.北京:人民卫生出版社, 2000: 165-168.
[38]
American Diabetes Association. Diabetes advocacy: standards of medical care in diabetes-2019[J]. Diabetes Care, 2019, 42(Suppl 1): S182-S183.
[39]
Ozaki K, Yamano S, Matsuura T, et al. Insulin-ameliorated peripheral motor neuropathy in spontaneously diabetic WBN/Kob rats[J]. J Vet Med Sci, 2013, 75(10): 1323-1328.
[40]
Dandona P, Mohanty P, Chaudhuri A, et al. Insulin infusion in acute illness[J]. J Clin Invest, 2005, 115(8): 2069-2072.
[41]
Koike H, Takahashi M, Ohyama K, et al. Clinicopathologic features of folate-deficiency neuropathy[J]. Neurology, 2015, 84(10): 1026-1033.
[42]
Mottaghi T, Khorvash F, Maracy M, et al. Effect of folic acid supplementation on nerve conduction velocity in diabetic polyneuropathy patients[J]. Neurol Res, 2019, 41(4): 364-368.
[43]
Meng X, Maurel P, Lam I, et al. Necl-4/Cadm4 recruits Par-3 to the Schwann cell adaxonal membrane[J]. Glia, 2019, 67(5): 884-895.
[44]
Hellweg R, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy[J]. J Neurosci Res, 1990, 26(2): 258-267.
[45]
Cheng HT, Dauch JR, Hayes JM, et al. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes[J]. Neurobiol Dis, 2012, 45(1): 280-287.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[5] 司钦亮, 毕世龙, 焦慧骁, 李世照, 陈哲禹, 武玉东. 精索去分化脂肪肉瘤两例并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 585-590.
[6] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[9] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[12] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?