切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (01) : 53 -56. doi: 10.3877/cma.j.issn.2095-123X.2020.01.012

所属专题: 文献

综述

MicroRNA调控认知功能的研究进展
黄可群1, 刘琳2, 崔巍1, 吴祥2,()   
  1. 1. 315211 宁波,宁波大学医学院
    2. 315020 宁波,宁波大学医学院附属医院麻醉科
  • 收稿日期:2020-01-02 出版日期:2020-02-15
  • 通信作者: 吴祥
  • 基金资助:
    浙江省自然科学基金(LY19H250001); 浙江省医药卫生科技计划项目(2019RC266)

Research progress in microRNA regulating cognitive function

Kequn Huang1, Lin Liu2, Wei Cui1, Xiang Wu2,()   

  1. 1. Medical School, Ningbo University, Ningbo 315211, China
    2. Department of Anesthesiology, Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
  • Received:2020-01-02 Published:2020-02-15
  • Corresponding author: Xiang Wu
  • About author:
    Corresponding author: Wu Xiang, Email:
引用本文:

黄可群, 刘琳, 崔巍, 吴祥. MicroRNA调控认知功能的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(01): 53-56.

Kequn Huang, Lin Liu, Wei Cui, Xiang Wu. Research progress in microRNA regulating cognitive function[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(01): 53-56.

微小RNA(miRNA)广泛存在于神经系统,可影响突触可塑性、神经炎症、自噬、氧化应激和毒性蛋白聚集等病理生理过程,调节学习、记忆等高级认知功能,参与阿尔茨海默病、术后认知障碍等认知障碍相关疾病的病理过程。此外,外周miRNA动态变化与中枢神经系统miRNA相似,因此有望成为早期检测和评估认知障碍相关疾病进展的潜在生物学标志物。本文综述了miRNA调控高级认知功能的分子机制和认知障碍相关疾病的病理机制,以及外周miRNA作为认知障碍相关疾病潜在生物学标志物的临床应用进展。

MicroRNA (miRNA) widely exists in the nervous system, and could regulate pathophysiological processes, such as synaptic plasticity, neuroinflammation, autophagy, oxidative stress, and toxic protein aggregation, affect learning, memory and other advanced cognitive functions, and participate in the cognition dysfunction-related diseases, including Alzheimer’s disease, post-operative cognitive dysfunction. Moreover, the peripheral changes of miRNA expression could be similar as those in the central nervous system, suggesting that peripheral miRNA might be developed as potential clinical biomarkers for cognition dysfunction-related diseases. This paper have summarized the molecular mechanisms underlying the action of miRNA on the cognitive functions and pathological mechanism of cognitive impairment related diseases, and the progress of miRNA used as biomarkers for cognition dysfunction-related diseases.

[1]
Buffington SA, Huang W, Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction[J]. Annu Rev Neurosci, 2014, 37: 17-38.
[2]
Scott HL, Tamagnini F, Narduzzo KE, et al. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex[J]. Eur J Neurosci, 2012, 36(7): 2941-2948.
[3]
Wang RY, Phang RZ, Hsu PH, et al. In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning[J]. Hippocampus, 2013, 23(7): 625-633.
[4]
Liu Q, Hou A, Zhang Y, et al. MiR-190a potentially ameliorates postoperative cognitive dysfunction by regulating Tiam1[J]. BMC Genomics, 2019, 20(1): 670.
[5]
Absalon S, Kochanek DM, Raghavan V, et al. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons[J]. J Neurosci, 2013, 33(37): 14645-14659.
[6]
Wang X, Tan L, Lu Y, et al. MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha[J]. FEBS Lett, 2015, 589(6): 726-729.
[7]
Liu Y, Yin Y. Emerging roles of immune cells in postoperative cognitive dysfunction[J]. Mediators Inflamm, 2018, 2018: 6215350.
[8]
Lukiw WJ, Andreeva TV, Grigorenko AP, et al. Studying micro RNA function and dysfunction in Alzheimer’s disease[J]. Front Genet, 2012, 3: 327.
[9]
Chen L, Dong R, Lu Y, et al. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice[J]. Brain Behav Immun, 2019, 78: 188-201.
[10]
Lu Y, Xu X, Dong R, et al. MicroRNA-181b-5p attenuates early postoperative cognitive dysfunction by suppressing hippocampal neuroinflammation in mice[J]. Cytokine, 2019, 120: 41-53.
[11]
Kabaria S, Choi DC, Chaudhuri AD, et al. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression[J]. Free Radic Biol Med, 2015, 89: 548-556.
[12]
Han J, Liu X, Li Y, et al. Sirt1/Nrf2 signalling pathway prevents cognitive impairment in diabetic rats through anti oxidative stress induced by miRNA-23b-3p expression[J]. Mol Med Rep, 2018, 17(6): 8414-8422.
[13]
Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: from anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases[J]. Biochimie, 2020, 171-172: 103-109.
[14]
Zhang Y, Liu C, Wang J, et al. MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice[J]. Sci Rep, 2016, 6: 24566.
[15]
Sun J, Gao X, Meng D, et al. Antagomirs targeting miroRNA-134 attenuates epilepsy in rats through regulation of oxidative stress, mitochondrial functions and autophagy[J]. Front Pharmacol, 2017, 8: 524.
[16]
Viegas AT, Carmona V, Ferreiro E, et al. miRNA-31 improves cognition and abolishes Amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease[J]. Mol Ther Nucleic Acids, 2020, 19: 1219-1236.
[17]
Wang Y, Cai Y, Huang H, et al. MiR-486-3p influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson’s disease[J]. Cell Physiol Biochem, 2018, 51(6): 2732-2745.
[18]
Ryan MM, Guevremont D, Mockett BG, et al. Circulating plasma microRNAs are altered with amyloidosis in a mouse model of Alzheimer’s disease[J]. J Alzheimers Dis, 2018, 66(2): 835-852.
[19]
Bhatnagar S, Chertkow H, Schipper HM, et al. Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma[J]. Front Mol Neurosci, 2014, 7: 2.
[20]
Xie B, Liu Z, Jiang L, et al. Increased serum miR-206 level predicts conversion from amnestic mild cognitive impairment to Alzheimer’s disease: a 5-year follow-up study[J]. J Alzheimers Dis, 2017, 55(2): 509-520.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[3] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[4] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[5] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[6] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[7] 王诗远, 张爱华. 慢性肾脏病相关认知障碍的发生机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(03): 163-167.
[8] 常文轩, 王婷, 刘伟, 蓝天琦, 彭静, 汪诗瑶, 张晓鹏, 冯晨, 宫雪梅, 朱敏. 脑小血管病所致执行障碍的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 179-182.
[9] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[10] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[11] 孙畅, 赵世刚, 白文婷. 脑卒中后认知障碍与内分泌激素变化的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 471-476.
[12] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[13] 王道合, 施媛媛. 8-iso-PGF2α及P选择素在评估脑小血管病患者认知功能中的价值[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 364-368.
[14] 张宇, 蔡玉洁, 林日清, 邱钦杰, 崔理立, 郑东, 周海红. 张力蛋白1对放射性脑损伤小鼠认知功能的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 244-253.
[15] 夏禹, 刘寒, 朱瑞. 阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 290-293.
阅读次数
全文


摘要