切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (01) : 53 -56. doi: 10.3877/cma.j.issn.2095-123X.2020.01.012

所属专题: 文献

综述

MicroRNA调控认知功能的研究进展
黄可群1, 刘琳2, 崔巍1, 吴祥2,()   
  1. 1. 315211 宁波,宁波大学医学院
    2. 315020 宁波,宁波大学医学院附属医院麻醉科
  • 收稿日期:2020-01-02 出版日期:2020-02-15
  • 通信作者: 吴祥
  • 基金资助:
    浙江省自然科学基金(LY19H250001); 浙江省医药卫生科技计划项目(2019RC266)

Research progress in microRNA regulating cognitive function

Kequn Huang1, Lin Liu2, Wei Cui1, Xiang Wu2,()   

  1. 1. Medical School, Ningbo University, Ningbo 315211, China
    2. Department of Anesthesiology, Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
  • Received:2020-01-02 Published:2020-02-15
  • Corresponding author: Xiang Wu
  • About author:
    Corresponding author: Wu Xiang, Email:
引用本文:

黄可群, 刘琳, 崔巍, 吴祥. MicroRNA调控认知功能的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(01): 53-56.

Kequn Huang, Lin Liu, Wei Cui, Xiang Wu. Research progress in microRNA regulating cognitive function[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(01): 53-56.

微小RNA(miRNA)广泛存在于神经系统,可影响突触可塑性、神经炎症、自噬、氧化应激和毒性蛋白聚集等病理生理过程,调节学习、记忆等高级认知功能,参与阿尔茨海默病、术后认知障碍等认知障碍相关疾病的病理过程。此外,外周miRNA动态变化与中枢神经系统miRNA相似,因此有望成为早期检测和评估认知障碍相关疾病进展的潜在生物学标志物。本文综述了miRNA调控高级认知功能的分子机制和认知障碍相关疾病的病理机制,以及外周miRNA作为认知障碍相关疾病潜在生物学标志物的临床应用进展。

MicroRNA (miRNA) widely exists in the nervous system, and could regulate pathophysiological processes, such as synaptic plasticity, neuroinflammation, autophagy, oxidative stress, and toxic protein aggregation, affect learning, memory and other advanced cognitive functions, and participate in the cognition dysfunction-related diseases, including Alzheimer’s disease, post-operative cognitive dysfunction. Moreover, the peripheral changes of miRNA expression could be similar as those in the central nervous system, suggesting that peripheral miRNA might be developed as potential clinical biomarkers for cognition dysfunction-related diseases. This paper have summarized the molecular mechanisms underlying the action of miRNA on the cognitive functions and pathological mechanism of cognitive impairment related diseases, and the progress of miRNA used as biomarkers for cognition dysfunction-related diseases.

[1]
Buffington SA, Huang W, Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction[J]. Annu Rev Neurosci, 2014, 37: 17-38.
[2]
Scott HL, Tamagnini F, Narduzzo KE, et al. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex[J]. Eur J Neurosci, 2012, 36(7): 2941-2948.
[3]
Wang RY, Phang RZ, Hsu PH, et al. In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning[J]. Hippocampus, 2013, 23(7): 625-633.
[4]
Liu Q, Hou A, Zhang Y, et al. MiR-190a potentially ameliorates postoperative cognitive dysfunction by regulating Tiam1[J]. BMC Genomics, 2019, 20(1): 670.
[5]
Absalon S, Kochanek DM, Raghavan V, et al. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons[J]. J Neurosci, 2013, 33(37): 14645-14659.
[6]
Wang X, Tan L, Lu Y, et al. MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha[J]. FEBS Lett, 2015, 589(6): 726-729.
[7]
Liu Y, Yin Y. Emerging roles of immune cells in postoperative cognitive dysfunction[J]. Mediators Inflamm, 2018, 2018: 6215350.
[8]
Lukiw WJ, Andreeva TV, Grigorenko AP, et al. Studying micro RNA function and dysfunction in Alzheimer’s disease[J]. Front Genet, 2012, 3: 327.
[9]
Chen L, Dong R, Lu Y, et al. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice[J]. Brain Behav Immun, 2019, 78: 188-201.
[10]
Lu Y, Xu X, Dong R, et al. MicroRNA-181b-5p attenuates early postoperative cognitive dysfunction by suppressing hippocampal neuroinflammation in mice[J]. Cytokine, 2019, 120: 41-53.
[11]
Kabaria S, Choi DC, Chaudhuri AD, et al. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression[J]. Free Radic Biol Med, 2015, 89: 548-556.
[12]
Han J, Liu X, Li Y, et al. Sirt1/Nrf2 signalling pathway prevents cognitive impairment in diabetic rats through anti oxidative stress induced by miRNA-23b-3p expression[J]. Mol Med Rep, 2018, 17(6): 8414-8422.
[13]
Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: from anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases[J]. Biochimie, 2020, 171-172: 103-109.
[14]
Zhang Y, Liu C, Wang J, et al. MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice[J]. Sci Rep, 2016, 6: 24566.
[15]
Sun J, Gao X, Meng D, et al. Antagomirs targeting miroRNA-134 attenuates epilepsy in rats through regulation of oxidative stress, mitochondrial functions and autophagy[J]. Front Pharmacol, 2017, 8: 524.
[16]
Viegas AT, Carmona V, Ferreiro E, et al. miRNA-31 improves cognition and abolishes Amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease[J]. Mol Ther Nucleic Acids, 2020, 19: 1219-1236.
[17]
Wang Y, Cai Y, Huang H, et al. MiR-486-3p influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson’s disease[J]. Cell Physiol Biochem, 2018, 51(6): 2732-2745.
[18]
Ryan MM, Guevremont D, Mockett BG, et al. Circulating plasma microRNAs are altered with amyloidosis in a mouse model of Alzheimer’s disease[J]. J Alzheimers Dis, 2018, 66(2): 835-852.
[19]
Bhatnagar S, Chertkow H, Schipper HM, et al. Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma[J]. Front Mol Neurosci, 2014, 7: 2.
[20]
Xie B, Liu Z, Jiang L, et al. Increased serum miR-206 level predicts conversion from amnestic mild cognitive impairment to Alzheimer’s disease: a 5-year follow-up study[J]. J Alzheimers Dis, 2017, 55(2): 509-520.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 卢凯, 王香云. 急性心肌梗死后心力衰竭患者血清微小RNA-200a表达及临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 488-491.
[4] 乌吉斯古楞, 哈斯高娃. mir-98-5p、ALKBH1在肝门部胆管癌组织中表达及与临床病理特征的关系[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 184-187.
[5] 郝春艳, 吉泽, 成苏杭, 李文思, 王丹. 血清miR-155联合sCD14水平判断慢性阻塞性肺疾病预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 87-90.
[6] 刘佳, 付丽, 杨月美. miR-138-5p调节HIF-1α/Notch1轴对滋养层细胞侵袭和血管生成的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 277-287.
[7] 李瑞雨, 王新亮, 徐丛丛, 刘严泽, 张雪竹. 国内外血管性认知障碍临床试验注册现状分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 14-20.
[8] 马良飞, 尹翎, 方婷, 曾西西, 佟佳璇, 马献昆. 重复经颅磁刺激联合虚拟现实技术对脑卒中后认知障碍的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 346-351.
[9] 高倩, 李晓芳, 杨亚昭, 张静, 崔蕾, 杨立青, 夏艳敏. 甲状腺激素及Apelin在CSVD致认知障碍的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 201-206.
[10] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(09): 1016-1020.
[11] 欧春影, 李晓宾, 郭靖, 许可, 王梦, 安晓雷. hs-CRP、Lp-PLA2和S100β与缺血性脑小血管病患者认知障碍的相关性[J]. 中华脑血管病杂志(电子版), 2024, 18(03): 265-269.
[12] 叶一, 曾勇. 血脂与轻度认知障碍相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 14-18.
[13] 赵晓晓, 邱嘉婷, 张懿姝, 张蓉, 张棚, 刘晓蕾. 丁苯酞在各类型认知障碍治疗中的应用研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 19-26.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 孙畅, 赵世刚, 白文婷. 脑卒中后认知障碍与内分泌激素变化的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 471-476.
阅读次数
全文


摘要