[1] |
Buffington SA, Huang W, Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction[J]. Annu Rev Neurosci, 2014, 37: 17-38.
|
[2] |
Scott HL, Tamagnini F, Narduzzo KE, et al. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex[J]. Eur J Neurosci, 2012, 36(7): 2941-2948.
|
[3] |
Wang RY, Phang RZ, Hsu PH, et al. In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning[J]. Hippocampus, 2013, 23(7): 625-633.
|
[4] |
Liu Q, Hou A, Zhang Y, et al. MiR-190a potentially ameliorates postoperative cognitive dysfunction by regulating Tiam1[J]. BMC Genomics, 2019, 20(1): 670.
|
[5] |
Absalon S, Kochanek DM, Raghavan V, et al. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons[J]. J Neurosci, 2013, 33(37): 14645-14659.
|
[6] |
Wang X, Tan L, Lu Y, et al. MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha[J]. FEBS Lett, 2015, 589(6): 726-729.
|
[7] |
Liu Y, Yin Y. Emerging roles of immune cells in postoperative cognitive dysfunction[J]. Mediators Inflamm, 2018, 2018: 6215350.
|
[8] |
Lukiw WJ, Andreeva TV, Grigorenko AP, et al. Studying micro RNA function and dysfunction in Alzheimer’s disease[J]. Front Genet, 2012, 3: 327.
|
[9] |
Chen L, Dong R, Lu Y, et al. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice[J]. Brain Behav Immun, 2019, 78: 188-201.
|
[10] |
Lu Y, Xu X, Dong R, et al. MicroRNA-181b-5p attenuates early postoperative cognitive dysfunction by suppressing hippocampal neuroinflammation in mice[J]. Cytokine, 2019, 120: 41-53.
|
[11] |
Kabaria S, Choi DC, Chaudhuri AD, et al. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression[J]. Free Radic Biol Med, 2015, 89: 548-556.
|
[12] |
Han J, Liu X, Li Y, et al. Sirt1/Nrf2 signalling pathway prevents cognitive impairment in diabetic rats through anti oxidative stress induced by miRNA-23b-3p expression[J]. Mol Med Rep, 2018, 17(6): 8414-8422.
|
[13] |
Kahroba H, Davatgaran-Taghipour Y. Exosomal Nrf2: from anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases[J]. Biochimie, 2020, 171-172: 103-109.
|
[14] |
Zhang Y, Liu C, Wang J, et al. MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice[J]. Sci Rep, 2016, 6: 24566.
|
[15] |
Sun J, Gao X, Meng D, et al. Antagomirs targeting miroRNA-134 attenuates epilepsy in rats through regulation of oxidative stress, mitochondrial functions and autophagy[J]. Front Pharmacol, 2017, 8: 524.
|
[16] |
Viegas AT, Carmona V, Ferreiro E, et al. miRNA-31 improves cognition and abolishes Amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease[J]. Mol Ther Nucleic Acids, 2020, 19: 1219-1236.
|
[17] |
Wang Y, Cai Y, Huang H, et al. MiR-486-3p influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson’s disease[J]. Cell Physiol Biochem, 2018, 51(6): 2732-2745.
|
[18] |
Ryan MM, Guevremont D, Mockett BG, et al. Circulating plasma microRNAs are altered with amyloidosis in a mouse model of Alzheimer’s disease[J]. J Alzheimers Dis, 2018, 66(2): 835-852.
|
[19] |
Bhatnagar S, Chertkow H, Schipper HM, et al. Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma[J]. Front Mol Neurosci, 2014, 7: 2.
|
[20] |
Xie B, Liu Z, Jiang L, et al. Increased serum miR-206 level predicts conversion from amnestic mild cognitive impairment to Alzheimer’s disease: a 5-year follow-up study[J]. J Alzheimers Dis, 2017, 55(2): 509-520.
|