切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 169 -173. doi: 10.3877/cma.j.issn.2095-123X.2020.03.009

所属专题: 文献

综述

SARS-CoV-2相关神经侵袭性研究进展
刘鸿坤1, 郑文斌1,()   
  1. 1. 515041 汕头,汕头大学医学院第二附属医院放射科
  • 收稿日期:2020-07-29 出版日期:2020-06-15
  • 通信作者: 郑文斌

Advances in the study of SARS-CoV-2 related nerve invasiveness

Hongkun Liu1, Wenbin Zheng1,()   

  1. 1. Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
  • Received:2020-07-29 Published:2020-06-15
  • Corresponding author: Wenbin Zheng
引用本文:

刘鸿坤, 郑文斌. SARS-CoV-2相关神经侵袭性研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 169-173.

Hongkun Liu, Wenbin Zheng. Advances in the study of SARS-CoV-2 related nerve invasiveness[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(03): 169-173.

越来越多的证据表明,严重急性呼吸系统综合征2型冠状病毒(SARS-CoV-2)对人体损害不局限于呼吸道,还可侵入中枢神经系统,诱发神经系统疾病。SARS-CoV-2病毒作为一种新兴的病毒,可能会对神经系统产生短期及长期影响。加之,目前SARS-CoV-2的临床治疗仅限于对症支持治疗以及使用多种抗RNA病毒药物(如法匹拉韦、羟氯喹),尽管专门针对SARS-CoV-2的疫苗和治疗性抗体在测试中,但这种解决方案具有长期性,需要对其安全性进行彻底测试。因此,了解SARS-CoV-2潜在的神经侵袭机制就显得尤为重要,对其防治工作具有重要的指导意义。本文就SARS-CoV-2的病原学、神经侵袭的可能机制以及与神经系统疾病的关系作一综述,旨在为SARS-CoV-2的有效防控治疗提供依据和参考。

There is increasing evidence that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can not only damage the respiratory tract, but also invade the central nervous system and induce nervous system diseases. SARS-CoV-2, as an emerging virus, may have both short-term and long-term effects on the nervous system. In addition, the current clinical treatment of SARS-CoV-2 is limited to symptomatic support therapy and the use of a variety of anti-RNA viral drugs (e.g., farapiravir, hydroxychloroquine). Although vaccines and therapeutic antibodies specifically targeted at SARS-CoV-2 are also being tested, this solution is long-term because they require thorough testing of their safety. Therefore, it is particularly important to understand the potential nerve invasion mechanism of SARS-CoV-2, which has important guiding significance for its prevention and treatment. This article reviews the etiology of SARS-CoV-2, the possible mechanism of nerve invasion, and its relationship with nervous system diseases, in order to provide evidence and reference for the effective prevention and treatment of SARS-CoV-2.

[1]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China[J]. JAMA Neurol, 2020, 77(6): 683-690.
[2]
Corman VM, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections[J]. Internist (Berl), 2019, 60(11): 1136-1145.
[3]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224): 565-574.
[4]
Mengeling WL, Boothe AD, Ritchie AE. Characteristics of a coronavirus (strain 67N) of pigs[J]. Am J Vet Res, 1972, 33(2): 297-308.
[5]
Li YC, Bai WZ, Hirano N, et al. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells[J]. Virus Res, 2012, 163(2): 628-635.
[6]
Andries K, Pensaert MB. Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus infection in pigs after oronasal inoculation[J]. Am J Vet Res, 1980, 41(9): 1372-1378.
[7]
Li YC, Bai WZ, Hirano N, et al. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication[J]. J Comp Neurol, 2013, 521(1): 203-212.
[8]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273.
[9]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483): 1260-1263.
[10]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020, 63(3): 457-460.
[11]
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.e286.
[12]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e278.
[13]
Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection[J]. Nature, 2020, 584(7819): 115-119.
[14]
Pellegrini L, Albecka A, Mallery DL, et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids[J]. Cell Stem Cell, 2020, 27(6): 951-961.e5.
[15]
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome[J]. Nature, 2012, 489(7416): 391-399.
[16]
Miller JA, Guillozet-Bongaarts A, Gibbons LE, et al. Neuropathological and transcriptomic characteristics of the aged brain[J]. Elife, 2017, 6: e31126.
[17]
Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain[J]. Cell Mol Neurobiol, 2020: 1-8.
[18]
Hikmet F, Méar L, Edvinsson Å, et al. The protein expression profile of ACE2 in human tissues[J]. Mol Syst Biol, 2020, 16(7): e9610.
[19]
Uhlen M, Karlsson MJ, Zhong W, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells[J]. Science, 2019, 366(6472): eaax9198.
[20]
Qiao J, Li W, Bao J, et al. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues[J]. Biochem Biophys Res Commun, 2020, Online ahead of print.
[21]
Desforges M, Le Coupanec A, Stodola JK, et al. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis[J]. Virus Res, 2014, 194: 145-158.
[22]
Berth SH, Leopold PL, Morfini GN. Virus-induced neuronal dysfunction and degeneration[J]. Front Biosci (Landmark Ed), 2009, 14: 5239-5259.
[23]
Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system[J]. Cell Host Microbe, 2013, 13(4): 379-393.
[24]
Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2[J]. J Virol, 2008, 82(15): 7264-7275.
[25]
Li K, Wohlford-Lenane C, Perlman S, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4[J]. J Infect Dis, 2016, 213(5): 712-722.
[26]
Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia[J]. Sci Adv, 2020, 6(31): eabc5801.
[27]
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341.
[28]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020, 395(10234): 1417-1418.
[29]
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2[J]. Int J Infect Dis, 2020, 94: 55-58.
[30]
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study[J]. Clin Infect Dis, 2020, 71(15): 889-890.
[31]
Kaye R, Chang CWD, Kazahaya K, et al. COVID-19 anosmia reporting tool: initial findings[J]. Otolaryngol Head Neck Surg, 2020, 163(1): 132-134.
[32]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
[33]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. Jama, 2020, 323(11): 1061-1069.
[34]
Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features[J]. Radiology, 2020, 296(2): E119-E120.
[35]
Tsai LK, Hsieh ST, Chang YC. Neurological manifestations in severe acute respiratory syndrome[J]. Acta Neurol Taiwan, 2005, 14(3): 113-119.
[36]
Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome[J]. J Clin Neurol, 2017, 13(3): 227-233.
[37]
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS[J]. J Exp Med, 2005, 202(3): 415-424.
[38]
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034.
[39]
Murray RS, Brown B, Brian D, et al. Detection of coronavirus RNA and antigen in multiple sclerosis brain[J]. Ann Neurol, 1992, 31(5): 525-533.
[40]
Fazzini E, Fleming J, Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease[J]. Mov Disord, 1992, 7(2): 153-158.
[41]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513.
[1] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[2] 徐燕, 茹彤, 郑明明, 顾燕, 朱湘玉, 严陈晨, 陈玲, 戴晨燕. Miller-Dieker综合征胎儿产前超声、磁共振影像学特征及遗传学分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 281-287.
[3] 钱雅君, 虞竹溪, 徐颖, 董丹江, 顾勤. 危重型新型冠状病毒感染合并侵袭性肺曲霉病的临床特征和高危因素分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 3-9.
[4] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[5] 李晓宇, 许昕, 谌诚, 张萌, 韩文科, 林健. 肾移植受者新型冠状病毒感染合并肺炎支原体感染临床特点及诊疗分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 354-357.
[6] 刘路浩, 张鹏, 陈荣鑫, 郭予和, 尹威, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 奈玛特韦/利托那韦治疗肾移植术后重型新型冠状病毒肺炎的临床效果分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 349-353.
[7] 程亚飞, 郭航. 中枢神经系统AQP4的调节机制研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 48-54.
[8] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[9] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[10] 张钊龙, 郑卉, 赵丹阳, 赵悰怡, 刘之琪, 张优佳, 秦秉玉. 趋化因子CXC配体13在中枢神经系统感染中的意义及相关研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 54-59.
[11] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[12] 倪世豪, 董晓明, 刘浩辉, 何星灵, 刘东华, 李姿儒, 李思静, 姜艳辉, 黄婕, 张小娇, 鲁路, 杨忠奇. 治疗新型冠状病毒感染中成药的临床证据分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1253-1269.
[13] 张宇, 王林. 急诊内科老年新型冠状病毒感染患者低钠血症发生情况调查分析[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 10-14.
[14] 王婉杰, 宋文超, 王键, 倪良晨, 洪健, 朱孝成, 姚立彬. 肥胖与中枢神经系统调控的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 108-112.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?