切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 169 -173. doi: 10.3877/cma.j.issn.2095-123X.2020.03.009

所属专题: 文献

综述

SARS-CoV-2相关神经侵袭性研究进展
刘鸿坤1, 郑文斌1,()   
  1. 1. 515041 汕头,汕头大学医学院第二附属医院放射科
  • 收稿日期:2020-07-29 出版日期:2020-06-15
  • 通信作者: 郑文斌

Advances in the study of SARS-CoV-2 related nerve invasiveness

Hongkun Liu1, Wenbin Zheng1,()   

  1. 1. Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
  • Received:2020-07-29 Published:2020-06-15
  • Corresponding author: Wenbin Zheng
引用本文:

刘鸿坤, 郑文斌. SARS-CoV-2相关神经侵袭性研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 169-173.

Hongkun Liu, Wenbin Zheng. Advances in the study of SARS-CoV-2 related nerve invasiveness[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(03): 169-173.

越来越多的证据表明,严重急性呼吸系统综合征2型冠状病毒(SARS-CoV-2)对人体损害不局限于呼吸道,还可侵入中枢神经系统,诱发神经系统疾病。SARS-CoV-2病毒作为一种新兴的病毒,可能会对神经系统产生短期及长期影响。加之,目前SARS-CoV-2的临床治疗仅限于对症支持治疗以及使用多种抗RNA病毒药物(如法匹拉韦、羟氯喹),尽管专门针对SARS-CoV-2的疫苗和治疗性抗体在测试中,但这种解决方案具有长期性,需要对其安全性进行彻底测试。因此,了解SARS-CoV-2潜在的神经侵袭机制就显得尤为重要,对其防治工作具有重要的指导意义。本文就SARS-CoV-2的病原学、神经侵袭的可能机制以及与神经系统疾病的关系作一综述,旨在为SARS-CoV-2的有效防控治疗提供依据和参考。

There is increasing evidence that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can not only damage the respiratory tract, but also invade the central nervous system and induce nervous system diseases. SARS-CoV-2, as an emerging virus, may have both short-term and long-term effects on the nervous system. In addition, the current clinical treatment of SARS-CoV-2 is limited to symptomatic support therapy and the use of a variety of anti-RNA viral drugs (e.g., farapiravir, hydroxychloroquine). Although vaccines and therapeutic antibodies specifically targeted at SARS-CoV-2 are also being tested, this solution is long-term because they require thorough testing of their safety. Therefore, it is particularly important to understand the potential nerve invasion mechanism of SARS-CoV-2, which has important guiding significance for its prevention and treatment. This article reviews the etiology of SARS-CoV-2, the possible mechanism of nerve invasion, and its relationship with nervous system diseases, in order to provide evidence and reference for the effective prevention and treatment of SARS-CoV-2.

[1]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China[J]. JAMA Neurol, 2020, 77(6): 683-690.
[2]
Corman VM, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections[J]. Internist (Berl), 2019, 60(11): 1136-1145.
[3]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224): 565-574.
[4]
Mengeling WL, Boothe AD, Ritchie AE. Characteristics of a coronavirus (strain 67N) of pigs[J]. Am J Vet Res, 1972, 33(2): 297-308.
[5]
Li YC, Bai WZ, Hirano N, et al. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells[J]. Virus Res, 2012, 163(2): 628-635.
[6]
Andries K, Pensaert MB. Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus infection in pigs after oronasal inoculation[J]. Am J Vet Res, 1980, 41(9): 1372-1378.
[7]
Li YC, Bai WZ, Hirano N, et al. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication[J]. J Comp Neurol, 2013, 521(1): 203-212.
[8]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273.
[9]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483): 1260-1263.
[10]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020, 63(3): 457-460.
[11]
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.e286.
[12]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e278.
[13]
Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection[J]. Nature, 2020, 584(7819): 115-119.
[14]
Pellegrini L, Albecka A, Mallery DL, et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids[J]. Cell Stem Cell, 2020, 27(6): 951-961.e5.
[15]
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome[J]. Nature, 2012, 489(7416): 391-399.
[16]
Miller JA, Guillozet-Bongaarts A, Gibbons LE, et al. Neuropathological and transcriptomic characteristics of the aged brain[J]. Elife, 2017, 6: e31126.
[17]
Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain[J]. Cell Mol Neurobiol, 2020: 1-8.
[18]
Hikmet F, Méar L, Edvinsson Å, et al. The protein expression profile of ACE2 in human tissues[J]. Mol Syst Biol, 2020, 16(7): e9610.
[19]
Uhlen M, Karlsson MJ, Zhong W, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells[J]. Science, 2019, 366(6472): eaax9198.
[20]
Qiao J, Li W, Bao J, et al. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues[J]. Biochem Biophys Res Commun, 2020, Online ahead of print.
[21]
Desforges M, Le Coupanec A, Stodola JK, et al. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis[J]. Virus Res, 2014, 194: 145-158.
[22]
Berth SH, Leopold PL, Morfini GN. Virus-induced neuronal dysfunction and degeneration[J]. Front Biosci (Landmark Ed), 2009, 14: 5239-5259.
[23]
Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system[J]. Cell Host Microbe, 2013, 13(4): 379-393.
[24]
Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2[J]. J Virol, 2008, 82(15): 7264-7275.
[25]
Li K, Wohlford-Lenane C, Perlman S, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4[J]. J Infect Dis, 2016, 213(5): 712-722.
[26]
Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia[J]. Sci Adv, 2020, 6(31): eabc5801.
[27]
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341.
[28]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020, 395(10234): 1417-1418.
[29]
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2[J]. Int J Infect Dis, 2020, 94: 55-58.
[30]
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study[J]. Clin Infect Dis, 2020, 71(15): 889-890.
[31]
Kaye R, Chang CWD, Kazahaya K, et al. COVID-19 anosmia reporting tool: initial findings[J]. Otolaryngol Head Neck Surg, 2020, 163(1): 132-134.
[32]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
[33]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. Jama, 2020, 323(11): 1061-1069.
[34]
Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features[J]. Radiology, 2020, 296(2): E119-E120.
[35]
Tsai LK, Hsieh ST, Chang YC. Neurological manifestations in severe acute respiratory syndrome[J]. Acta Neurol Taiwan, 2005, 14(3): 113-119.
[36]
Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome[J]. J Clin Neurol, 2017, 13(3): 227-233.
[37]
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS[J]. J Exp Med, 2005, 202(3): 415-424.
[38]
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034.
[39]
Murray RS, Brown B, Brian D, et al. Detection of coronavirus RNA and antigen in multiple sclerosis brain[J]. Ann Neurol, 1992, 31(5): 525-533.
[40]
Fazzini E, Fleming J, Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease[J]. Mov Disord, 1992, 7(2): 153-158.
[41]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513.
[1] 丁妍, 文华轩, 陈芷萱, 曾晴, 张梦雨, 廖伊梅, 罗丹丹, 秦越, 梁美玲, 邹于, 李胜利. 胎儿小脑皮质发育不良的产前超声诊断[J]. 中华医学超声杂志(电子版), 2023, 20(03): 255-264.
[2] 宋聪颖, 陆远强. 新型冠状病毒感染防控新阶段公立医院运营面临的难题及思考[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 3-5.
[3] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[4] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[5] 戚若晨, 马帅军, 韩士超, 王国辉, 刘克普, 张小燕, 杨晓剑, 秦卫军. 肾移植术后新型冠状病毒感染单中心诊疗经验[J]. 中华移植杂志(电子版), 2023, 17(04): 232-239.
[6] 刘路浩, 苏泳鑫, 曾丽娟, 张鹏, 陈荣鑫, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 新型冠状病毒感染疫情期间肾移植受者免疫抑制剂服药依从性研究[J]. 中华移植杂志(电子版), 2023, 17(03): 140-145.
[7] 陈琦, 郭嘉瑜, 陈忠宝, 马枭雄, 王天宇, 邹寄林, 张龙, 蔡治涛, 邱涛, 周江桥. 新型冠状病毒感染流行下我国器官捐献者筛选规则是否应时而变?[J]. 中华移植杂志(电子版), 2023, 17(02): 82-88.
[8] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[9] 邹振玉, 刘雨辰, 邢晓伟, 杨硕, 王明刚. 新型冠状病毒疫情常态化防控下腹股沟疝日间手术管理和安全性分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 82-86.
[10] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[11] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[12] 徐静媛, 谢波, 邱海波, 杨毅. 《重症医学》课程思政建设的探索与实践[J]. 中华重症医学电子杂志, 2023, 09(03): 265-268.
[13] 肖海燕, 段业英, 吴玥琳, 伍丽婵, 唐灏珂. 神经学音乐治疗心搏骤停后缺血缺氧性脑病产妇一例[J]. 中华重症医学电子杂志, 2023, 09(02): 217-224.
[14] 漆祎鸣, 潘文志, 朱风琴, 周达新, 葛均波. 新型冠状病毒感染后经导管主动脉瓣置换术安全性分析[J]. 中华心脏与心律电子杂志, 2023, 11(02): 105-108.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要