切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 174 -177. doi: 10.3877/cma.j.issn.2095-123X.2020.03.010

所属专题: 文献

综述

经颅磁刺激在酒精使用障碍应用的研究及探讨
孙玮1, 武桥2, 高励3, 杨建中1,()   
  1. 1. 650101 昆明,昆明医科大学第二附属医院精神科
    2. 621000 绵阳市第三人民医院精神科
    3. 610000 成都市第三人民医院神经内科
  • 收稿日期:2020-10-08 出版日期:2020-06-15
  • 通信作者: 杨建中

Research and discussion on application of transcranial magnetic stimulation in alcohol use disorder

Wei Sun1, Qiao Wu2, Li Gao3, Jianzhong Yang1,()   

  1. 1. Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
    2. Department of Psychiatry, Mianyang Third People’s Hospital, Mianyang 621000, China
    3. Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu 610000, China
  • Received:2020-10-08 Published:2020-06-15
  • Corresponding author: Jianzhong Yang
引用本文:

孙玮, 武桥, 高励, 杨建中. 经颅磁刺激在酒精使用障碍应用的研究及探讨[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 174-177.

Wei Sun, Qiao Wu, Li Gao, Jianzhong Yang. Research and discussion on application of transcranial magnetic stimulation in alcohol use disorder[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(03): 174-177.

经颅磁刺激技术作为一种无创神经调控技术,在临床上被广泛应用。酒精使用障碍(AUD)作为临床最常见的物质使用障碍类型,现阶段在治疗上仍存在诸多挑战。经颅磁刺激为酒精使用障碍提供了新的治疗策略。本文将从经颅磁刺激在AUD的应用理论基础、研究现状及未来发展方向进行综述。

Transcranial magnetic stimulation technology, as a non-invasive neuromodulation technology, has been widely used clinically in recent years. Alcohol use disorder is the most common type of substance use disorder in clinic, and there are many challenges in treatment at this stage. Transcranial magnetic stimulation provides a new treatment strategy for alcohol use disorder. This article reviews the theoretical basis, research status and future development direction of transcranial magnetic stimulation in alcohol use disorder.

[1]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders[M]. 5th Edition. Washington: American Psychiatric Publishing, 2009.
[2]
Grant BF, Goldstein RB, Saha TD, et al. Epidemiology of DSM-5 alcohol use disorder: results from the national epidemiologic survey on alcohol and related conditions III[J]. JAMA Psychiatry, 2015, 72(8): 757-766.
[3]
Boothby LA, Doering PL. Acamprosate for the treatment of alcohol dependence[J]. Clin Ther, 2005, 27(6): 695-714.
[4]
Koob GF. Alcoholism: allostasis and beyond[J]. Alcohol Clin Exp Res, 2003, 27(2): 232-243.
[5]
Bates ME, Voelbel GT, Buckman JF, et al. Short-term neuropsychological recovery in clients with substance use disorders[J]. Alcohol Clin Exp Res, 2005, 29(3): 367-377.
[6]
Noël X, Brevers D, Bechara A. A neurocognitive approach to understanding the neurobiology of addiction[J]. Curr Opin Neurobiol, 2013, 23(4): 632-638.
[7]
Sofuoglu M. Cognitive enhancement as a pharmacotherapy target for stimulant addiction[J]. Addiction, 2010, 105(1): 38-48.
[8]
Feil J, Zangen A. Brain stimulation in the study and treatment of addiction[J]. Neurosci Biobehav Rev, 2010, 34(4): 559-574.
[9]
Guan YZ, Ye JH. Ethanol blocks long-term potentiation of GABAergic synapses in the ventral tegmental area involving mu-opioid receptors[J]. Neuropsychopharmacology, 2010, 35(9): 1841-1849.
[10]
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the brain: neuronal molecular targets, synapses, and circuits[J]. Neuron, 2017, 96(6): 1223-1238.
[11]
Dowdle LT, Brown TR, George MS, et al. Single pulse TMS to the DLPFC, compared to a matched sham control, induces a direct, causal increase in caudate, cingulate, and thalamic BOLD signal[J]. Brain Stimul, 2018, 11(4): 789-796.
[12]
Hanlon CA, Canterberry M, Taylor JJ, et al. Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study[J]. PloS One, 2013, 8(7): e67917.
[13]
Ziemann U, Lonnecker S, Paulus W. Inhibition of human motor cortex by ethanol. A transcranial magnetic stimulation study[J]. Brain, 1995, 118(Pt 6): 1437-1446.
[14]
Nardone R, Bergmann J, Kronbichler M, et al. Altered motor cortex excitability to magnetic stimulation in alcohol withdrawal syndrome[J]. Alcohol Clin Exp Res, 2010, 34(4): 628-632.
[15]
Nardone R, Bergmann J, De Blasi P, et al. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study[J]. J Neural Transm (Vienna), 2010, 117(3): 385-391.
[16]
Kaarre O, Kallioniemi E, Könönen M, et al. Heavy alcohol use in adolescence is associated with altered cortical activity: a combined TMS-EEG study[J]. Addict Biol, 2018, 23(1): 268-280.
[17]
Krawczyk DC. Contributions of the prefrontal cortex to the neural basis of human decision making[J]. Neurosci Biobehav Rev, 2002, 26(6): 631-664.
[18]
Mishra BR, Nizamie SH, Das B, et al. Efficacy of repetitive transcranial magnetic stimulation in alcohol dependence: a sham-controlled study[J]. Addiction, 2010, 105(1): 49-55.
[19]
Mishra BR, Praharaj SK, Katshu MZ, et al. Comparison of anticraving efficacy of right and left repetitive transcranial magnetic stimulation in alcohol dependence: a randomized double-blind study[J]. J Neuropsychiatry Clin Neurosci, 2015, 27(1): e54-e59.
[20]
Hoppner J, Broese T, Wendler L, et al. Repetitive transcranial magnetic stimulation (rTMS) for treatment of alcohol dependence[J]. World J Biol Psychiatry, 2011, 12 Suppl 1: 57-62.
[21]
Herremans SC, Baeken C, Vanderbruggen N, et al. No influence of one right-sided prefrontal HF-rTMS session on alcohol craving in recently detoxified alcohol-dependent patients: results of a naturalistic study[J]. Drug Alcohol Depend, 2012, 120(1-3): 209-213.
[22]
Herremans SC, Vanderhasselt MA, De Raedt R, et al. Reduced intra-individual reaction time variability during a go-nogo task in detoxified alcohol-dependent patients after one right-sided dorsolateral prefrontal HF-rTMS session[J]. Alcohol Alcohol, 2013, 48(5): 552-567.
[23]
Del Felice A, Bellamoli E, Formaggio E, et al. Neurophysiological, psychological and behavioural correlates of rTMS treatment in alcohol dependence[J]. Drug Alcohol Depend, 2016, 158: 147-153.
[24]
Qiao J, Jin G, Lei L, et al. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients[J]. Neuropsychiatr Dis Treat, 2016, 12: 2273-2278.
[25]
Rapinesi C, Kotzalidis GD, Serata D, et al. Efficacy of add-on deep transcranial magnetic stimulation in comorbid alcohol dependence and dysthymic disorder: three case reports[J]. Prim Care Companion CNS Disord, 2013, 15(1): PCC.12m01438.
[26]
Rapinesi C, Kotzalidis GD, Scatena P, et al. Alcohol and suicidality: could deep transcranial magnetic stimulation (dTMS) be a possible treatment?[J]. Psychiatr Danub, 2014, 26(3): 281-284.
[27]
Girardi P, Rapinesi C, Chiarotti F, et al. Add-on deep transcranial magnetic stimulation (dTMS) in patients with dysthymic disorder comorbid with alcohol use disorder: a comparison with standard treatment[J]. World J Biol Psychiatry, 2015, 16(1): 66-73.
[28]
Rapinesi C, Curto M, Kotzalidis GD, et al. Antidepressant effectiveness of deep transcranial magnetic stimulation (dTMS) in patients with major depressive disorder (MDD) with or without alcohol use disorders (AUDs): a 6-month, open label, follow-up study[J]. J Affect Disord, 2015, 174: 57-63.
[29]
Ceccanti M, Inghilleri M, Attilia ML, et al. Deep TMS on alcoholics: effects on cortisolemia and dopamine pathway modulation. a pilot study[J]. Can J Physiol Pharmacol, 2015, 93(4): 283-290.
[30]
Addolorato G, Antonelli M, Cocciolillo F, et al. Deep transcranial magnetic stimulation of the dorsolateral prefrontal cortex in alcohol use disorder patients: effects on dopamine transporter availability and alcohol intake[J]. Eur Neuropsychopharmacol, 2017, 27(5): 450-461.
[31]
Henssen A, Zilles K, Palomero-Gallagher N, et al. Cytoarchitecture and probability maps of the human medial orbitofrontal cortex[J]. Cortex, 2016, 75: 87-112.
[32]
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 87(Pt A): 85-107.
[33]
Claus ED, Ewing SW, Filbey FM, et al. Identifying neurobiological phenotypes associated with alcohol use disorder severity[J]. Neuropsychopharmacology, 2011, 36(10): 2086-2096.
[34]
Myrick H, Anton RF, Li X, et al. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people[J]. Arch Gen Psychiatry, 2008, 65(4): 466-475.
[35]
Reinhard I, Lemenager T, Fauth-Buhler M, et al. A comparison of region-of-interest measures for extracting whole brain data using survival analysis in alcoholism as an example[J]. J Neurosci Methods, 2015, 242: 58-64.
[36]
Hanlon CA, Dowdle LT, Correia B, et al. Left frontal pole theta burst stimulation decreases orbitofrontal and insula activity in cocaine users and alcohol users[J]. Drug Alcohol Depend, 2017, 178: 310-317.
[37]
Liston C, Chen AC, Zebley BD, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression[J]. Biol Psychiatry, 2014, 76(7): 517-526.
[38]
Vollstadt-Klein S, Loeber S, Richter A, et al. Validating incentive salience with functional magnetic resonance imaging: association between mesolimbic cue reactivity and attentional bias in alcohol-dependent patients[J]. Addict Biol, 2012, 17(4): 807-816.
[39]
Field M, Cox WM. Attentional bias in addictive behaviors: a review of its development, causes, and consequences[J]. Drug Alcohol Depend, 2008, 97(1-2): 1-20.
[40]
Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction[J]. J Psychiatry Neurosci, 2012, 37(1): 17-27.
[1] 周杰, 陈倩茵, 张静琳. 视觉重塑在视觉损伤中的原理及应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 221-225.
[2] 黄志毅, 赵娟. 重复经颅磁刺激联合分级运动想象训练对脑梗死后偏瘫患者运动功能及神经功能的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 102-107.
[3] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[4] 潘升超, 陈燕, 余程冬, 曹晓光. 重复经颅磁刺激技术在颅脑外伤康复中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 118-123.
[5] 邓艳媚, 龙耀斌, 李鑫, 莫丽华. 经颅磁刺激结合前庭康复训练对ADHD患儿注意力缺陷的影响及临床机制[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 34-38.
[6] 张建萍, 邓海鹏, 焦黛妍, 赵洁. 高频重复经颅磁刺激联合肌电生物反馈治疗脑卒中后吞咽障碍的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 285-290.
[7] 江伟, 袁良津, 唐向阳, 张斗凤, 王少敏. 高频重复经颅磁刺激规律间歇治疗丘脑梗死后中枢性疼痛的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 269-273.
[8] 李婷婷, 梁军军, 王玉琴, 刘双洁, 吕铭新. 对侧抑制性rTMS联合运动想象对脑卒中偏瘫患者肢体功能的康复效果[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 210-216.
[9] 惠子欣, 张军. 弥散张量成像对重复经颅磁刺激治疗缺血性脑卒中偏瘫患者的疗效评估[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 204-209.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 潘惠, 王明, 杨忠, 杜向东. 低频重复经颅磁刺激辅助治疗伴不同特征抑郁症的对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 562-568.
[12] 黄爱茹, 付婧, 余茜. 多模块3D虚拟现实技术联合重复经颅磁刺激治疗卒中后认知功能障碍的效果[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1089-1095.
[13] 杨轩, 石晴, 邱海斌, 黄强. 重复经颅磁刺激联合艾司唑仑对脑卒中失眠患者的疗效及其对血清细胞因子和神经递质的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 395-399.
[14] 陈芸, 张乔阳, 张敏, 曹音, 董贯忠, 恽文伟, 杨海燕, 张伟媛. 高频重复经颅磁刺激联合认知行为治疗对脑卒中后焦虑和抑郁共病状态患者的影响[J]. 中华卫生应急电子杂志, 2022, 08(04): 205-210.
[15] 祁研, 张岩, 陈雪, 刘颖, 史楠. 探讨高低频交互rTMS对老年脑卒中偏瘫患者肢体功能、吞咽功能及日常生活活动能力的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 359-363.
阅读次数
全文


摘要