切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (05) : 316 -320. doi: 10.3877/cma.j.issn.2095-123X.2020.05.013

所属专题: 文献

临床研究

高血压脑出血患者术后不同程度抑郁风险因素模型构建及验证
谷雪峰1, 王晓虹1,()   
  1. 1. 250013 济南市中心医院神经外科
  • 收稿日期:2020-08-21 出版日期:2020-10-15
  • 通信作者: 王晓虹

Construction and validation of risk factor models for different degrees of depression in patients with hypertensive intracerebral hemorrhage after surgery

Xuefeng Gu1, Xiaohong Wang1,()   

  1. 1. Department of Neurosurgery, Ji’nan Central Hospital, Ji’nan 250013, China
  • Received:2020-08-21 Published:2020-10-15
  • Corresponding author: Xiaohong Wang
引用本文:

谷雪峰, 王晓虹. 高血压脑出血患者术后不同程度抑郁风险因素模型构建及验证[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(05): 316-320.

Xuefeng Gu, Xiaohong Wang. Construction and validation of risk factor models for different degrees of depression in patients with hypertensive intracerebral hemorrhage after surgery[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(05): 316-320.

目的

构建和验证高血压脑出血(HICH)患者术后不同程度抑郁风险因素的模型。

方法

纳入济南市中心医院神经外科自2017年7月至2020年3月收治的200例HICH术后患者,分为术后抑郁组(89例)和非抑郁组(111例),对患者相关因素进行单因素分析;根据卒中后抑郁诊断标准将术后抑郁组分为轻度组和中重度组,进行Logistic回归分析,构建中重度抑郁风险预测模型并进行验证,用RStudio软件构造其列线图。

结果

200例HICH患者的抑郁发生率为44.5%,其中轻度抑郁发生率为59.6%(53例),中重度抑郁发生率为40.4%(36例)。单因素分析显示:抑郁组与非抑郁组患者的性别、性格、家庭收入、出血程度、瘫痪等级、血清脑源性神经营养因子(BDNF)水平、血清同型半胱氨酸(Hcy)水平、血浆核因子E2相关因子(Nrf2)水平具有统计学意义(P<0.05);轻度与中重度抑郁患者的家庭收入、出血程度、瘫痪等级、Hcy水平、Nrf2水平、BDNF水平是具有统计学意义(P<0.05)。纳入多因素Logistic回归分析显示,出血程度、瘫痪等级、Hcy水平、Nrf2水平、BDNF水平是影响HICH术后不同程度抑郁的独立危险因素(P<0.05)。构建的中重度抑郁风险预测模型灵敏度为89.6%,特异度为84.6%,AUC(95%CI)为0.794(0.694~0.831),且验证结果与构建结果相同。

结论

HICH术后不同程度抑郁的主要风险因素为出血程度、瘫痪等级、Hcy水平、Nrf2水平、BDNF水平。研究构建的风险预测模型可成为其术后中重度抑郁发生的风险预测工具。

Objective

To construct and validate models of risk factors for depression in patients with hypertensive intracerebral hemorrhage (HICH) after surgery.

Methods

The study included the case data of 200 patients with HICH who were admitted to our hospital from July 2017 to March 2020. They were divided into postoperative depression group (n=89) and non-depression group (n=111), a univariate analysis was performed on patients. According to the post stroke depression diagnostic criteria, the postoperative depression group was divided into two groups: mild and moderate-severe. Logistic regression analysis was performed on the two groups, a moderate to severe depression risk prediction model was constructed and verified, and the nomogram was constructed with RStudio software.

Results

The incidence of depression in 200 patients with HICH was 44.5%, of which the incidence of mild depression was 59.6%, and the incidence of moderate to severe depression was 40.4%. A univariate analysis of the depression group and the non-depression group showed that, the gender, personality, family income, degree of bleeding, level of paralysis, brain-derived neurotrophic factor (BDNF) level, homocysteine (Hcy) level, nuclear factor erythroid-2 related factor 2 (Nrf2) level of the two groups were statistically significant (P<0.05). Univariate analysis of mild and moderate-severe depression showed that family income, bleeding degree, paralysis level, Hcy level, Nrf2 level, and BDNF level were statistically significant (P<0.05). The inclusion of multivariate Logistic regression analysis showed that the degree of bleeding, the level of paralysis, the level of Hcy, the level of Nrf2, and the level of BDNF were independent risk factors for different degrees of depression after HICH (P<0.05). The sensitivity of the constructed moderate to severe depression risk prediction model was 89.6%, the specificity was 84.6%, and the AUC (95%CI) was 0.794 (0.694-0.831), and the verification results were the same as the constructed results.

Conclusion

The main risk factors for different degrees of depression after HICH are the degree of bleeding, the level of paralysis, the level of Hcy, the level of Nrf2, and the level of BDNF. The risk prediction model constructed by the research can become a risk prediction tool for the occurrence of moderate to severe depression after surgery.

表1 2组患者术后抑郁风险相关因素分析比较
表2 不同程度抑郁风险因素的单因素分析
表3 2组患者术后不同程度抑郁风险多因素Logistic回归分析
图1 中重度抑郁风险预测模型ROC曲线
图2 HICH术后中重度抑郁的预测和实际发生率的校准图
表4 HICH术后中重度抑郁的预测模型准确性分析
图3 高血压脑出血术后中重度抑郁风险预测列线图
[1]
中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国各类主要脑血管病诊断要点2019[J].中华神经科杂志, 2019, 52(9): 710-715.
[2]
Hackett ML, Pickles K. Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies[J]. Int J Stroke, 2014, 9(8): 1017-1025.
[3]
Yue Y, Liu R, Cao Y, et al. New opinion on the subtypes of poststroke depression in Chinese stroke survivors[J]. Neuropsychiatr Dis Treat, 2017, 6(13): 707-713.
[4]
叶顶英.高血压性脑出血患者术后抑郁的相关因素分析[J].中国医药导刊, 2014, 16(2): 357-358.
[5]
袁波,谭莉,李鑫,等.缺血性脑卒中NIHSS评分与卒中抑郁的相关性分析[J].中国神经免疫学和神经病学杂志, 2018, 25(6): 430-432, 461.
[6]
陈莉,吕建国,陈仕芬,等.高血压性脑出血患者术后抑郁危险因素的Logistic回归分析[J].山西医药杂志, 2015, 44(12): 1339-1341.
[7]
王春燕.高血压性脑出血患者术后抑郁影响因素分析[J].中国实用神经疾病杂志, 2013, 16(18): 56-57.
[8]
Carota A, Berney A, Aybek S, et al. A prospective study of predictors of poststroke depression[J]. Neurology, 2005, 64(3): 428-433.
[9]
周剑,赵性泉,候欣怡,等.高血压脑出血卒中后抑郁风险因素相关性研究[J].中国卒中杂志, 2010, 5(9): 741-745.
[10]
刘永珍,尹静,赵翠竹,等.急性期首发脑卒中后抑郁状态与认知功能障碍的相关危险因素研究[J].中华老年心脑血管病杂志, 2018, 20(4): 353-357.
[11]
王凝瑶,薛伟书.血清同型半胱氨酸与老年脑出血并发抑郁患者认知功能的相关性研究[J].中华老年心脑血管病杂志, 2020, 22(1): 63-65.
[12]
杨蓉蓉.血清同型半胱氨酸、胱抑素C与老年卒中后抑郁的相关性分析[J].中西医结合心血管病电子杂志, 2019, 7(21): 60-61.
[13]
罗俊霞. BDNF信号途径在神经可塑性和抑郁症发病中的作用研究[D].山东:山东大学, 2015.
[14]
张晓飞,刘兴宇,崔建忠,等.血清脑源性神经营养因子水平对保守治疗的高血压脑出血患者抑郁情绪的影响[J].中国脑血管病杂志, 2019, 16(9): 466-470.
[15]
Mang CS, Campbell KL, Ross CJ, et al. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor[J]. Phys Ther, 2013, 93(12): 1707-1716.
[16]
田相娟,王美萍. BDNF基因与抑郁[J].心理科学进展, 2016, 24(10): 1583-1591.
[17]
Wu Y, Wang L, Hu K, et al. Mechanisms and therapeutic targets of depression after intracerebral hemorrhage[J]. Front Psychiatry, 2018, 17(9): 682.
[18]
蔡翥.社会支持对慢性病患者身心健康的影响[J].医学与哲学, 2006, 27(5): 54-56.
[19]
焦瑞娟,陈士芳,史素玲.脑卒中瘫痪患者抑郁障碍与社会支持的相关性研究[J].中国实用神经疾病杂志, 2014, 17(1): 50-52.
[1] 汪彦阳, 周远洋, 魏雪菲, 陶志嵩, 龚海燕. 基于癌症基因组图谱构建乳腺癌中WAC反义RNA1的加权基因共表达网络和临床预测模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 218-228.
[2] 陈永庄, 莫小乔, 谢天. 心血管事件患者术后30 d死亡风险决策树模型的构建与评估——基于少数类样本合成过采样技术算法[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 390-398.
[3] 徐双云, 汪佩林, 卫志文. 轮状病毒阳性肠炎并发惊厥危险因素及相关预测模型构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 260-266.
[4] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[5] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 王万川, 麦广智, 张晓槟, 冯家豪. 腹腔镜下LAR术治疗低位直肠癌保肛术中钉仓数量与术后LARS的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 491-496.
[8] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[9] 徐伯麒, 陶亮, 章帆, 毛忠琦. 结肠癌患者淋巴结转移预测模型的建立[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 393-397.
[10] 张荷连, 刘禹, 李丹妮, 彭茹, 杨彩蝶, 窦恒, 吴红梅. 心理障碍对重度哮喘患者的疾病控制及生活工作质量的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 589-591.
[11] 杨静, 顾红叶, 赵莹莹, 孙梦霞, 查园园, 王琪. 老年血液透析患者短期死亡的影响因素及列线图预测模型的预测作用[J]. 中华肾病研究电子杂志, 2023, 12(05): 254-259.
[12] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[13] 付强, 秦丽媛, 李全波. 神经病理性疼痛患者血清miR-15a水平及意义分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 293-298.
[14] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
[15] 潘惠, 王明, 杨忠, 杜向东. 低频重复经颅磁刺激辅助治疗伴不同特征抑郁症的对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 562-568.
阅读次数
全文


摘要