切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (05) : 316 -320. doi: 10.3877/cma.j.issn.2095-123X.2020.05.013

所属专题: 文献

临床研究

高血压脑出血患者术后不同程度抑郁风险因素模型构建及验证
谷雪峰1, 王晓虹1,()   
  1. 1. 250013 济南市中心医院神经外科
  • 收稿日期:2020-08-21 出版日期:2020-10-15
  • 通信作者: 王晓虹

Construction and validation of risk factor models for different degrees of depression in patients with hypertensive intracerebral hemorrhage after surgery

Xuefeng Gu1, Xiaohong Wang1,()   

  1. 1. Department of Neurosurgery, Ji’nan Central Hospital, Ji’nan 250013, China
  • Received:2020-08-21 Published:2020-10-15
  • Corresponding author: Xiaohong Wang
引用本文:

谷雪峰, 王晓虹. 高血压脑出血患者术后不同程度抑郁风险因素模型构建及验证[J/OL]. 中华脑科疾病与康复杂志(电子版), 2020, 10(05): 316-320.

Xuefeng Gu, Xiaohong Wang. Construction and validation of risk factor models for different degrees of depression in patients with hypertensive intracerebral hemorrhage after surgery[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(05): 316-320.

目的

构建和验证高血压脑出血(HICH)患者术后不同程度抑郁风险因素的模型。

方法

纳入济南市中心医院神经外科自2017年7月至2020年3月收治的200例HICH术后患者,分为术后抑郁组(89例)和非抑郁组(111例),对患者相关因素进行单因素分析;根据卒中后抑郁诊断标准将术后抑郁组分为轻度组和中重度组,进行Logistic回归分析,构建中重度抑郁风险预测模型并进行验证,用RStudio软件构造其列线图。

结果

200例HICH患者的抑郁发生率为44.5%,其中轻度抑郁发生率为59.6%(53例),中重度抑郁发生率为40.4%(36例)。单因素分析显示:抑郁组与非抑郁组患者的性别、性格、家庭收入、出血程度、瘫痪等级、血清脑源性神经营养因子(BDNF)水平、血清同型半胱氨酸(Hcy)水平、血浆核因子E2相关因子(Nrf2)水平具有统计学意义(P<0.05);轻度与中重度抑郁患者的家庭收入、出血程度、瘫痪等级、Hcy水平、Nrf2水平、BDNF水平是具有统计学意义(P<0.05)。纳入多因素Logistic回归分析显示,出血程度、瘫痪等级、Hcy水平、Nrf2水平、BDNF水平是影响HICH术后不同程度抑郁的独立危险因素(P<0.05)。构建的中重度抑郁风险预测模型灵敏度为89.6%,特异度为84.6%,AUC(95%CI)为0.794(0.694~0.831),且验证结果与构建结果相同。

结论

HICH术后不同程度抑郁的主要风险因素为出血程度、瘫痪等级、Hcy水平、Nrf2水平、BDNF水平。研究构建的风险预测模型可成为其术后中重度抑郁发生的风险预测工具。

Objective

To construct and validate models of risk factors for depression in patients with hypertensive intracerebral hemorrhage (HICH) after surgery.

Methods

The study included the case data of 200 patients with HICH who were admitted to our hospital from July 2017 to March 2020. They were divided into postoperative depression group (n=89) and non-depression group (n=111), a univariate analysis was performed on patients. According to the post stroke depression diagnostic criteria, the postoperative depression group was divided into two groups: mild and moderate-severe. Logistic regression analysis was performed on the two groups, a moderate to severe depression risk prediction model was constructed and verified, and the nomogram was constructed with RStudio software.

Results

The incidence of depression in 200 patients with HICH was 44.5%, of which the incidence of mild depression was 59.6%, and the incidence of moderate to severe depression was 40.4%. A univariate analysis of the depression group and the non-depression group showed that, the gender, personality, family income, degree of bleeding, level of paralysis, brain-derived neurotrophic factor (BDNF) level, homocysteine (Hcy) level, nuclear factor erythroid-2 related factor 2 (Nrf2) level of the two groups were statistically significant (P<0.05). Univariate analysis of mild and moderate-severe depression showed that family income, bleeding degree, paralysis level, Hcy level, Nrf2 level, and BDNF level were statistically significant (P<0.05). The inclusion of multivariate Logistic regression analysis showed that the degree of bleeding, the level of paralysis, the level of Hcy, the level of Nrf2, and the level of BDNF were independent risk factors for different degrees of depression after HICH (P<0.05). The sensitivity of the constructed moderate to severe depression risk prediction model was 89.6%, the specificity was 84.6%, and the AUC (95%CI) was 0.794 (0.694-0.831), and the verification results were the same as the constructed results.

Conclusion

The main risk factors for different degrees of depression after HICH are the degree of bleeding, the level of paralysis, the level of Hcy, the level of Nrf2, and the level of BDNF. The risk prediction model constructed by the research can become a risk prediction tool for the occurrence of moderate to severe depression after surgery.

表1 2组患者术后抑郁风险相关因素分析比较
表2 不同程度抑郁风险因素的单因素分析
表3 2组患者术后不同程度抑郁风险多因素Logistic回归分析
图1 中重度抑郁风险预测模型ROC曲线
图2 HICH术后中重度抑郁的预测和实际发生率的校准图
表4 HICH术后中重度抑郁的预测模型准确性分析
图3 高血压脑出血术后中重度抑郁风险预测列线图
[1]
中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国各类主要脑血管病诊断要点2019[J].中华神经科杂志, 2019, 52(9): 710-715.
[2]
Hackett ML, Pickles K. Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies[J]. Int J Stroke, 2014, 9(8): 1017-1025.
[3]
Yue Y, Liu R, Cao Y, et al. New opinion on the subtypes of poststroke depression in Chinese stroke survivors[J]. Neuropsychiatr Dis Treat, 2017, 6(13): 707-713.
[4]
叶顶英.高血压性脑出血患者术后抑郁的相关因素分析[J].中国医药导刊, 2014, 16(2): 357-358.
[5]
袁波,谭莉,李鑫,等.缺血性脑卒中NIHSS评分与卒中抑郁的相关性分析[J].中国神经免疫学和神经病学杂志, 2018, 25(6): 430-432, 461.
[6]
陈莉,吕建国,陈仕芬,等.高血压性脑出血患者术后抑郁危险因素的Logistic回归分析[J].山西医药杂志, 2015, 44(12): 1339-1341.
[7]
王春燕.高血压性脑出血患者术后抑郁影响因素分析[J].中国实用神经疾病杂志, 2013, 16(18): 56-57.
[8]
Carota A, Berney A, Aybek S, et al. A prospective study of predictors of poststroke depression[J]. Neurology, 2005, 64(3): 428-433.
[9]
周剑,赵性泉,候欣怡,等.高血压脑出血卒中后抑郁风险因素相关性研究[J].中国卒中杂志, 2010, 5(9): 741-745.
[10]
刘永珍,尹静,赵翠竹,等.急性期首发脑卒中后抑郁状态与认知功能障碍的相关危险因素研究[J].中华老年心脑血管病杂志, 2018, 20(4): 353-357.
[11]
王凝瑶,薛伟书.血清同型半胱氨酸与老年脑出血并发抑郁患者认知功能的相关性研究[J].中华老年心脑血管病杂志, 2020, 22(1): 63-65.
[12]
杨蓉蓉.血清同型半胱氨酸、胱抑素C与老年卒中后抑郁的相关性分析[J].中西医结合心血管病电子杂志, 2019, 7(21): 60-61.
[13]
罗俊霞. BDNF信号途径在神经可塑性和抑郁症发病中的作用研究[D].山东:山东大学, 2015.
[14]
张晓飞,刘兴宇,崔建忠,等.血清脑源性神经营养因子水平对保守治疗的高血压脑出血患者抑郁情绪的影响[J].中国脑血管病杂志, 2019, 16(9): 466-470.
[15]
Mang CS, Campbell KL, Ross CJ, et al. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor[J]. Phys Ther, 2013, 93(12): 1707-1716.
[16]
田相娟,王美萍. BDNF基因与抑郁[J].心理科学进展, 2016, 24(10): 1583-1591.
[17]
Wu Y, Wang L, Hu K, et al. Mechanisms and therapeutic targets of depression after intracerebral hemorrhage[J]. Front Psychiatry, 2018, 17(9): 682.
[18]
蔡翥.社会支持对慢性病患者身心健康的影响[J].医学与哲学, 2006, 27(5): 54-56.
[19]
焦瑞娟,陈士芳,史素玲.脑卒中瘫痪患者抑郁障碍与社会支持的相关性研究[J].中国实用神经疾病杂志, 2014, 17(1): 50-52.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[5] 高金红, 陈玉梅, 郭韵. 基于King互动达标理论的心理疏导在腹腔镜肝癌切除术患者的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 517-520.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 杜晨阳, 王勇, 段鑫, 柯文杰, 石念, 武英翔, 罗文. 腹腔镜下食管裂孔疝修补术后吞咽困难的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 523-527.
[8] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[9] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[14] 白杰, 王唯一, 陈超, 王帆, 肖新如. 神经外科住培医师职业倦怠及影响因素研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 662-670.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要