[1] |
Belykh E, Shaffer KV, Lin C, et al. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: delivering optical labels to brain tumors[J]. Front Oncol, 2020, 10: 739.
|
[2] |
Kuroiwa T, Kajimoto Y, Ohta T. Development of a fluorescein operative microscope for use during malignant glioma surgery: a technical note and preliminary report[J]. Surg Neurol, 1998, 50(1): 41-49.
|
[3] |
Shinoda J, Yano H, Yoshimura S, et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note[J]. J Neurosurg, 2003, 99(3): 597-603.
|
[4] |
Schebesch KM, Proescholdt M, Höhne J, et al. Sodium fluorescein-guided resection under the yellow 560 nm surgical microscope filter in malignant brain tumor surgery-a feasibility study[J]. Acta Neurochir (Wien), 2013, 155(4): 693-699.
|
[5] |
Acerbi F, Broggi M, Eoli M, et al. Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases[J]. Acta Neurochir (Wien), 2013, 155(7): 1277-1286.
|
[6] |
Acerbi F, Broggi M, Schebesch KM, et al. Fluorescein-guided surgery for resection of high-grade gliomas: a multicentric prospective phase II study (FLUOGLIO)[J]. Clin Cancer Res, 2018, 24: 52-61.
|
[7] |
Katsevman GA, Turner RC, Urhie O, et al. Utility of sodium fluorescein for achieving resection targets in glioblastoma: increased gross-or near-total resections and prolonged survival[J]. J Neurosurg, 2019, 132(3): 914-920.
|
[8] |
Göker B, Kırış T. Sodium fluorescein-guided brain tumor surgery under the yellow-560-nm surgical microscope filter in pediatric age group: feasibility and preliminary results[J]. Childs Nerv Syst, 2019, 35(3): 429-435.
|
[9] |
Bowden SG, Neira JA, Gill BJA, et al. Sodium fluorescein facilitates guided sampling of diagnostic tumor tissue in nonenhancing gliomas[J]. Neurosurgery, 2018, 82(5): 719-727.
|
[10] |
da Silva CE, da Silva VD, da Silva JL. Convexity meningiomas enhanced by sodium fluorescein[J]. Surg Neurol Int, 2014, 5: 3.
|
[11] |
Stummer W, Stepp H, Möller G, et al. Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue[J]. Acta Neurochir (Wien), 1998, 140(10): 995-1000.
|
[12] |
Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial[J]. Lancet Oncol, 2006, 7(5): 392-401.
|
[13] |
Hadjipanayis CG, Stummer W. 5-ALA and FDA approval for glioma surgery[J]. J Neurooncol, 2019, 141(3): 479-486.
|
[14] |
Cho SS, Salinas R, Lee J. Indocyanine-green for fluorescence-guided surgery of brain tumors: evidence, tchniques, and practical experience[J]. Front Surg, 2019, 6: 11.
|
[15] |
Wei L, Roberts DW, Sanai N, et al. Visualization technologies for 5-ALA-based fluorescence-guided surgeries[J]. J Neurooncol, 2019, 141(3): 495-505.
|
[16] |
Turcotte EL, Rahme RJ, Merrill SA, et al. The utility of 5-aminolevulinic acid for microsurgical resection of meningiomas[J]. World Neurosurg, 2020, 139: 343.
|
[17] |
Suero Molina E, Wölfer J, Ewelt C, et al. Dual-labeling with 5-aminolevulinic acid and fluorescein for fluorescence-guided resection of high-grade gliomas: technical note[J]. J Neurosurg, 2018, 128(2): 399-405.
|
[18] |
Woitzik J, Pena-Tapia PG, Schneider UC, et al. Cortical perfusion measurement by indocyaninegreen videoangiography in patients undergoing hemicraniectomy for malignant stroke[J]. Stroke, 2006, 37(6): 1549-1551.
|
[19] |
Caplan JM, Eric S, Yang W, et al. Impact of indocyanine green videoangiography on rate of clip adjustments following intraoperative angiography[J]. Neurosurgery, 2014, 75(4): 437-444.
|
[20] |
Lai LT, Morgan MK. Use of indocyanine green videoangiography during intracranial aneurysm surgery reduces the incidence of postoperative ischaemic complications[J]. J Clin Neurosci, 2014, 21(1): 67-72.
|
[21] |
Riva M, Amin-Hanjani S, Giussani C, et al. Indocyanine green videoangiography in aneurysm surgery: systematic review and meta-analysis[J]. Neurosurgery, 2018, 83(2): 166-180.
|
[22] |
Nickele C, Nguyen V, Fisher W, et al. A pilot comparison of multispectral fluorescence to indocyanine green videoangiography and other modalities for intraoperative assessment in vascular neurosurgery[J]. Oper Neurosurg, 2019, 17(1): 103-109.
|
[23] |
Sato T, Suzuki K, Sakuma J, et al. Development of a new high-resolution intraoperative imaging system (dual-image videoangiography, DIVA) to simultaneously visualize light and near-infrared fluorescence images of indocyanine green angiography[J]. Acta Neurochir (Wien), 2015, 157(8): 1295-1301.
|
[24] |
Catapano G, Sgulò F, Laleva L, et al. Multimodal use of indocyanine green endoscopy in neurosurgery: a single-center experience and review of the literature[J]. Neurosurg Rev, 2018, 41(4): 985-998.
|
[25] |
Kamada K, Guger C, Takeuchi F. Multispectrum indocyanine green videography for visualizing brain vascular pathology[J]. World Neurosurg, 2019, 132: e545-e553.
|
[26] |
Athanasopoulos D, Heimann A, Nakamura M, et al. Real-time overlapping of indocyanine green-video angiography with white light imaging for vascular neurosurgery: technique, implementation, and clinical experience[J]. Oper Neurosurg (Hagerstown), 2020, 19(4): 453-460.
|