切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2021, Vol. 11 ›› Issue (03) : 139 -146. doi: 10.3877/cma.j.issn.2095-123X.2021.03.003

临床研究

基于多数据库分析PARK2在泛癌中的表达与突变
豆雅楠1, 费晓炜1, 魏嘉良1, 费舟1,()   
  1. 1. 710032 西安,空军军医大学第一附属医院神经外科
  • 收稿日期:2021-05-18 出版日期:2021-06-15
  • 通信作者: 费舟

Analysis of the expression and mutation of PARK2 in pan-cancer based on multiple databases

Ya’nan Dou1, Xiaowei Fei1, Jialiang Wei1, Zhou Fei1,()   

  1. 1. Department of Neurosurgery, The First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China
  • Received:2021-05-18 Published:2021-06-15
  • Corresponding author: Zhou Fei
引用本文:

豆雅楠, 费晓炜, 魏嘉良, 费舟. 基于多数据库分析PARK2在泛癌中的表达与突变[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(03): 139-146.

Ya’nan Dou, Xiaowei Fei, Jialiang Wei, Zhou Fei. Analysis of the expression and mutation of PARK2 in pan-cancer based on multiple databases[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2021, 11(03): 139-146.

目的

分析PARK2在泛癌中的表达与突变。

方法

采用肿瘤免疫数据库TIMER2.0分析PARK2在33种肿瘤中的mRNA表达水平,探讨癌症相关成纤维细胞浸润水平与癌症基因组图谱(TCGA)不同癌症类型中PARK2基因表达的潜在关系;采用GEPIA数据库获得所有TCGA中不同PARK2表达的肿瘤患者的总生存期(OS)和无病生存期(DFS);采用cBioportal数据库进行泛癌种基因突变汇总并获得PARK2功能结构域图上的具体的突变位点信息;采用STRING数据库得到PARK2的蛋白相互作用网络。

结果

PARK2在大多数癌症中高表达且与肿瘤患者的预后存在明显相关性。PARK2的表达与宫颈鳞癌、腺癌、结肠癌、食管癌及头颈鳞状细胞癌等癌症中的肿瘤相关成纤维细胞浸润水平相关。PARK2基因的突变和(或)缺失也参与了PARK2的功能发挥。

结论

PARK2的表达与临床预后、免疫浸润等存在统计学相关性,将有助于从临床肿瘤样本的角度理解PARK2在肿瘤发生中的作用,为多癌肿的治疗提供一种潜在的靶向治疗策略。

Objective

To analyze the expression and mutation of PARK2 in pan-cancer.

Methods

The tumor immune database TIMER2.0 was used to analyze the mRNA expression level of PARK2 in 33 tumors, and to investigate the potential relationship between the level of cancer-related fibroblast infiltration and PARK2 gene expression in different cancer types of The Cancer Genome Atlas (TCGA); the GEPIA database was used to obtain the overall survival and disease-free survival of PARK2 in all TCGA tumors; the cBioportal database was used to summarize the mutations of pan-cancer genes and obtain the specific mutation site information on the PARK2 functional domain map; the STRING database was used to obtain the protein interaction network of PARK2.

Results

PARK2 is highly expressed in most cancers and has a significant correlation with the prognosis of tumor patients. The expression of PARK2 was correlated with the infiltration of tumor associated fibroblasts in cervical squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, esophageal carcinoma, head and neck squamous cell carcinoma. Mutations and/or deletions of PARK2 gene are also involved in the function of PARK2.

Conclusion

The pan-cancer analysis of PARK2 showed that PARK2 expression was statistically correlated with clinical prognosis, immune invasion, etc., which will help to understand the role of in tumorigenesis from the perspective of clinical tumor samples and provide a potential targeted therapeutic strategy for the treatment of multiple cancers.

图1 PARK2在各个肿瘤中的mRNA和病理分期的表达
图2 PARK2高表达/低表达对生存的影响
图3 TCGA包含的不同肿瘤类型中PARK2的遗传变异情况
图4 免疫细胞的浸润水平与TCGA不同癌症类型中PARK2基因表达之间的相关性
图5 PARK2结合蛋白和PARK2表达相关基因分析
[1]
Cui X, Zhang X, Liu M, et al. A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors[J]. Genomics, 2020, 112(6): 3958-3967.
[2]
Ihle NT, Abraham RT. The Pten-Parkin axis: at the nexus of cancer and neurodegeneration[J]. Molecular Cell, 2017, 65(6): 959-960.
[3]
Poulogiannis G, McIntyre RE, Dimitriadi M, et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice[J]. Proc Natl Acad Sci USA, 2010, 107(34): 15145-15150.
[4]
Xiong D, Wang Y, Kupert E, et al. A recurrent mutation in PARK2 is associated with familial lung cancer[J]. Am J Hum Genet, 2015, 96(2): 301-308.
[5]
Li C, Zhang Y, Cheng X, et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism[J]. Dev Cell, 2018, 46(4): 441-455.e8.
[6]
Lin DC, Xu L, Chen Y, et al. Genomic and functional analysis of the E3 ligase PARK2 in glioma[J]. Cancer Res, 2015, 75(9): 1815-1827.
[7]
Zhang ZL, Wang NN, Ma QL, et al. Somatic and germline mutations in the tumor suppressor gene PARK2 impair PINK1/Parkin-mediated mitophagy in lung cancer cells[J]. Acta Pharmacol Sin, 2020, 41(1): 93-100.
[8]
Zhou X, Li Y, Wang W, et al. Regulation of Hippo/YAP signaling and esophageal squamous carcinoma progression by an E3 ubiquitin ligase PARK2[J]. Theranostics, 2020, 10(21): 9443-9457.
[9]
Lei Z, Duan H, Zhao T, et al. PARK2 inhibits osteosarcoma cell growth through the JAK2/STAT3/VEGF signaling pathway[J]. Cell Death Dis, 2018, 9(3): 375.
[10]
Duan H, Lei Z, Xu F, et al. PARK2 suppresses proliferation and tumorigenicity in non-small cell lung cancer[J]. Front Oncol, 2019, 9: 790.
[11]
Chen H, Li Y, Li Y, et al. PARK2 promotes mitochondrial pathway of apoptosis and antimicrotubule drugs chemosensitivity via degradation of phospho-BCL-2[J]. Theranostics, 2020, 10(22): 9984-10000.
[12]
Xu L, Lin DC, Yin D, et al. An emerging role of PARK2 in cancer[J]. J Mol Med (Berl), 2014, 92(1): 31-42.
[13]
Sun X, Liu M, Hao J, et al. Parkin deficiency contributes to pancreatic tumorigenesis by inducing spindle multipolarity and misorientation[J]. Cell Cycle, 2013, 12(7): 1133-1141.
[14]
Editorial expression of concern: parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27[J]. Proc Natl Acad Sci USA, 2017, 114(16): E3364.
[15]
Ikeuchi K, Marusawa H, Fujiwara M, et al. Attenuation of proteolysis-mediated cyclin e regulation by alternatively spliced parkin in human colorectal cancers[J]. Int J Cancer, 2009, 125(9): 2029-2035.
[16]
Agirre X, Román-Gómez J, Vázquez I, et al. Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia[J]. Int J Cancer, 2006, 118(8): 1945-1953.
[17]
Denison SR, Wang F, Becker NA, et al. Alterations in the common fragile site gene parkin in ovarian and other cancers[J]. Oncogene, 2003, 22(51): 8370-8378.
[18]
Denison SR, Callahan G, Becker NA, et al. Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer[J]. Genes Chromosomes Cancer, 2003, 38(1): 40-52.
[1] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[2] 阚路兰, 田茂强, 唐一蜜. 以腹痛为首发症状的轻型Gitelman综合征患儿1例及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 473-479.
[3] 慕佳霖, 冷雪霏, 田飞, 王丽娜, 陈志红. NSD1基因新发突变致Sotos综合征患儿1例临床分析并国内相关文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 692-702.
[4] 罗序峰, 廖建湘, 罗智强, 段婧, 李永利, 徐建芳, 陈黎. Na+通道阻滞剂治疗SCN2A基因变异所致早发型癫痫性脑病并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 585-590.
[5] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[6] 王勇, 黄铁模, 于守君. RPS21在肝细胞癌中的表达及与免疫浸润和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 413-417.
[7] 杨晓健, 张炎, 冯嘉荣, 刘卓杰, 张浩. 先天性输精管缺如合并肾脏畸形三例CFTR基因突变检测并文献复习[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 110-113.
[8] 孙玲, 邹陆曦, 滑瑞雪, 吴雨. 血清铁调素-25与维持性血液透析患者生存预后的关系研究[J]. 中华肾病研究电子杂志, 2022, 11(04): 191-196.
[9] 付皓丽, 张成, 梁舒婷, 苗泽群, 孟庆娱, 黄旅珍, 郭丽莉, 欧阳倩如, 许欣, 曹宇, 张晶议, 王乐今. FRMD7基因新突变位点导致先天性眼球震颤一家系的遗传学研究[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 152-157.
[10] 程亚飞, 任长远, 李海马, 孙恺, 马亚群. FSTL1基因在胶质瘤发展中作用的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 206-215.
[11] 杨翠萍, 杨晓金, 全旭, 谢玲, 吴云林, 陈平. 肝细胞核因子-1α基因突变协同腺瘤样结肠息肉病基因突变对家族性腺瘤性息肉病细胞增殖的影响[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 228-231.
[12] 李燕, 姚毅冰, 毛志远, 于海燕, 刘昕, 樊再雯. NCAPH在肺鳞癌中表达的临床意义及与免疫微环境浸润的关系[J]. 中华临床医师杂志(电子版), 2023, 17(04): 446-454.
[13] 王倩, 王永萍, 李新培, 杨成艳, 许慧, 孙凤娟, 刘亚平. 伴基因突变的低钾血症诊断学特征分析[J]. 中华诊断学电子杂志, 2023, 11(02): 115-119.
[14] 滕振, 闫波. 转录因子HAND1基因多态性在心血管疾病中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 5-11.
[15] 时文霞, 郭勇鑫, 申俊杰, 陈文明, 郭文文, 赵同峰, 赵丹丹, 陈建, 孙忠亮, 孙道萍. RUNX1基因突变对成人急性髓系白血病患者临床特征、疗效及预后的影响[J]. 中华诊断学电子杂志, 2022, 10(03): 163-170.
阅读次数
全文


摘要