切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 370 -374. doi: 10.3877/cma.j.issn.2095-123X.2021.06.011

综述

外泌体miRNA在脑胶质瘤中的诊断、治疗和预后的研究进展
赵小玉1, 李彦东1, 吴昊1, 范海1, 吕明月1, 沈宇晟1, 盛成俊1, 曾加1, 吴徐超1, 朱国华1,(), 更·党木仁加甫1   
  1. 1. 830054 乌鲁木齐,新疆医科大学第一附属医院神经外科中心
  • 收稿日期:2021-09-23 出版日期:2021-12-15
  • 通信作者: 朱国华
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2018D01A53)

Research progress on exosome miRNA in diagnosis, treatment and prognosis of glioma

Xiaoyu Zhao1, Yandong Li1, Hao Wu1, Hai Fan1, Mingyue Lyu1, Yusheng Shen1, Chengjun Sheng1, Jia Zeng1, Xuchao Wu1, Guohua Zhu1,(), Dangmurenjiafu Geng1   

  1. 1. Department of Neurosurgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
  • Received:2021-09-23 Published:2021-12-15
  • Corresponding author: Guohua Zhu
引用本文:

赵小玉, 李彦东, 吴昊, 范海, 吕明月, 沈宇晟, 盛成俊, 曾加, 吴徐超, 朱国华, 更·党木仁加甫. 外泌体miRNA在脑胶质瘤中的诊断、治疗和预后的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 370-374.

Xiaoyu Zhao, Yandong Li, Hao Wu, Hai Fan, Mingyue Lyu, Yusheng Shen, Chengjun Sheng, Jia Zeng, Xuchao Wu, Guohua Zhu, Dangmurenjiafu Geng. Research progress on exosome miRNA in diagnosis, treatment and prognosis of glioma[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2021, 11(06): 370-374.

胶质瘤是一种源自神经外胚层胶质细胞的最突出的侵袭性脑恶性肿瘤,是最常见的原发性颅内肿瘤之一。外泌体是细胞通过胞吐分泌的直径为30~150 nm的盘状小泡,几乎所有类型的细胞都分泌外泌体,其广泛存在于血液、尿液、唾液、脑脊液和其他细胞外液中。外泌体包括蛋白质、脂质、microRNA (miRNA)、信使RNA和DNA,其中仅miRNA具有低免疫原性、低毒性、血流稳定性,由于其出色的介导细胞间通讯的能力,尤其是在脑肿瘤进展中,成为了一种有前途的治疗和诊断工具。目前,越来越多的miRNA被发现参与到胶质瘤的发生进展、诊断、治疗和预后的过程中。本文围绕外泌体miRNA在脑胶质瘤的诊断、治疗和预后中的作用综述如下。

Glioma is one of the most common primary intracranial tumors, which is the most prominent invasive brain tumor derived from neuroectodermal glia. Exosomes are discoid vesicles with a diameter of 30-150 nm secreted by cells through exocytosis. Almost all types of cells secrete exosomes, which are widely present in blood, urine, saliva, cerebrospinal fluid and other extracellular fluids. Exosomes include proteins, lipids, microRNA (miRNA), messenger RNA and DNA. Only miRNA has low immunogenicity, low toxicity and blood flow stability. Therefore, it has become a promising therapeutic and diagnostic tool because of its excellent ability to mediate intercellular communication, especially in the progression of brain tumors. At present, more and more miRNAs are found to be involved in the pathogenesis, progression, diagnosis, prognosis and treatment of the glioma. This review will introduce the role of exosome miRNA in the diagnosis, treatment and prognosis of glioma.

表1 外泌体miRNA在胶质瘤诊断、治疗和预后中的具体作用
microRNA 目的基因 表达状态 诊断意义 生物作用 预后意义 参考文献
miR-29a Hbp1 上调 调节免疫抑制微环境 [4]
miR-92a Prkar1a 上调 调节免疫抑制微环境 [4]
miR-10a RORA,PTEN 上调 调节免疫抑制微环境 [5]
miR-21 RORAPTENVEGFc-Myc 上调 调节免疫抑制微环境,促进增殖和免疫抑制 [5,24,26,28,30,39]
miR-26a PTEN 上调 促进血管生成 [6]
miR-148a CADM1 下调 促进增殖和转移 [7]
miR-133b EZH2 下调 抑制增殖、侵袭和迁移 [8]
miR-199a AGAP2 下调 抑制增殖、侵袭,增强化学治疗敏感性 [9]
miR-1587 NCOR1 下调 增加致瘤性 [10]
miR-301a TCEAL7 上调 提高放射治疗抗性 [11,40]
miR-1238 CAV1 上调 促进增殖、迁移和替莫唑胺抗性 [12]
miR-9 COL18A1THBS2PTCH1PHD3 上调 增加血管生成 [23]
miR-222   上调 - [24]
miR-124a FOXA2 上调 使胶质瘤细胞活力和克隆原性显著降低 [27]
miR-451 c-Myc 上调 促进增殖和免疫抑制 [28,41]
miR-221   上调 促进增殖、迁移和替莫唑胺抗性 [29,40]
miR-103   上调 - [30]
miR-24   上调 - [30]
miR-125   上调 - [30]
miR-1290   上调 调节免疫抑制微环境 [32]
miR-1246   上调 调节免疫抑制微环境 [32]
miR-375 SLC31A1 下调 抑制神经胶质瘤进展 [33]
miR-454-3p ATG12 下调 - [34]
miR-146b EGFRNF-κB 下调 减少胶质瘤在体内的生长 [36]
miR-124 CDK6 下调 抑制胶质瘤增殖,迁移,并具有化学治疗敏感性 [37]
miR-151a XRCC4 上调 增强对替莫唑胺的化学敏感性 [39]
miR-584-5p CYP2J2 上调 抑制胶质瘤细胞增殖转移 [42]
miR-214 PCBP2 上调 抑制胶质瘤细胞增殖生长 [43]
[1]
徐勇明,王宏勤. MicroRNA调控胶质瘤替莫唑胺化疗耐药的研究进展[J]. 中华神经创伤外科电子杂志, 2016, 2(4): 241-244.
[2]
Tabibkhooei A, Izadpanahi M, Arab A, et al. Profiling of novel circulating microRNAs as a non-invasive biomarker in diagnosis and follow-up of high and low-grade gliomas[J]. Clin Neurol Neurosurg, 2020, 190: 105652.
[3]
Shi R, Wang PY, Li XY, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients[J]. Oncotarget, 2015, 6(29): 26971-26981.
[4]
Guo X, Qiu W, Wang J, et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways[J]. Int J Cancer, 2019, 144(12): 3111-3126.
[5]
Guo X, Qiu W, Liu Q, et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways[J]. Oncogene, 2018, 37(31): 4239-4259.
[6]
Wang ZF, Liao F, Wu H, et al. Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma[J]. J Exp Clin Cancer Res, 2019, 38(1): 201.
[7]
Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1[J]. Bull Cancer, 2018, 105(7-8): 643-651.
[8]
Xu H, Zhao G, Zhang Y, et al. Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2[J]. Stem Cell Res Ther, 2019, 10(1): 381.
[9]
Yu L, Gui S, Liu Y, et al. Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2[J]. Aging (Albany NY), 2019, 11(15): 5300-5318.
[10]
Figueroa J, Phillips LM, Shahar T, et al. Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587[J]. Cancer Res, 2017, 77(21): 5808-5819.
[11]
Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7[J]. Mol Ther, 2019, 27(11): 1939-1949.
[12]
Yin J, Zeng A, Zhang Z, et al. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma[J]. EBioMedicine, 2019, 42: 238-251.
[13]
Li Q, Wang AY, Xu QG, et al. In-vitro inhibitory effect of EGFL7-RNAi on endothelial angiogenesis in glioma[J]. Int J Clin Exp Pathol, 2015, 8(10): 12234-12242.
[14]
Molinaro AM, Taylor JW, Wiencke JK, et al. Genetic and molecular epidemiology of adult diffuse glioma[J]. Nat Rev Neurol, 2019, 15(7): 405-417.
[15]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352(10): 987-996.
[16]
Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment[J]. Pharmacol Ther, 2015, 152: 63-82.
[17]
H Rashed M, Bayraktar E, K Helal G, et al. Exosomes: from garbage bins to promising therapeutic targets[J]. Int J Mol Sci, 2017, 18(3): 538.
[18]
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers[J]. Cancer Gene Ther, 2016, 23(12): 415-418.
[19]
Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol, 2008, 10(12): 1470-1476.
[20]
Hallal S, Russell BP, Wei H, et al. Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A as a potential glioblastoma biomarker with prognostic significance[J]. Proteomics, 2019, 19(1-2): e1800157.
[21]
Williams N. Solvents in the workplace[J]. Occup Health (Lond), 1995, 47(5): 169-170.
[22]
Li CC, Eaton SA, Young PE, et al. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells[J]. RNA Biol, 2013, 10(8): 1333-1344.
[23]
Chen X, Yang F, Zhang T, et al. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma[J]. J Exp Clin Cancer Res, 2019, 38(1): 99.
[24]
Santangelo A, Imbrucè P, Gardenghi B, et al. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker[J]. J Neurooncol, 2018, 136(1): 51-62.
[25]
Henriksen M, Johnsen KB, Olesen P, et al. MicroRNA expression signatures and their correlation with clinicopathological features in glioblastoma multiforme[J]. Neuromolecular Med, 2014, 16(3): 565-577.
[26]
Sun X, Ma X, Wang J, et al. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal[J]. Oncotarget, 2017, 8(22): 36137-36148.
[27]
Lang FM, Hossain A, Gumin J, et al. Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas[J]. Neuro Oncol, 2018, 20(3): 380-390.
[28]
van der Vos KE, Abels ER, Zhang X, et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain[J]. Neuro Oncol, 2016, 18(1): 58-69.
[29]
Monteforte A, Lam B, Sherman MB, et al. Glioblastoma exosomes for therapeutic angiogenesis in peripheral ischemia[J]. Tissue Eng Part A, 2017, 23(21-22): 1251-1261.
[30]
Akers JC, Ramakrishnan V, Kim R, et al. miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients[J]. J Neurooncol, 2015, 123(2): 205-216.
[31]
Fareh M, Almairac F, Turchi L, et al. Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth[J]. Cell Death Dis, 2017, 8(3): e2713.
[32]
Tüzesi Á, Kling T, Wenger A, et al. Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells[J]. Oncotarget, 2017, 8(52): 90164-90175.
[33]
Deng SZ, Lai MF, Li YP, et al. Human marrow stromal cells secrete microRNA-375-containing exosomes to regulate glioma progression[J]. Cancer Gene Ther, 2020, 27(3-4): 203-215.
[34]
Shao N, Xue L, Wang R, et al. miR-454-3p is an exosomal biomarker and functions as a tumor suppressor in glioma[J]. Mol Cancer Ther, 2019, 18(2): 459-469.
[35]
Qian M, Wang S, Guo X, et al. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways[J]. Oncogene, 2020, 39(2): 428-442.
[36]
Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth[J]. Cancer Lett, 2013, 335(1): 201-204.
[37]
Sharif S, Ghahremani MH, Soleimani M. Delivery of exogenous miR-124 to glioblastoma multiform cells by Wharton’s Jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity[J]. Stem Cell Rev Rep, 2018, 14(2): 236-246.
[38]
Lan F, Qing Q, Pan Q, et al. Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma[J]. Cell Oncol (Dordr), 2018, 41(1): 25-33.
[39]
Zeng A, Wei Z, Yan W, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma[J]. Cancer Lett, 2018, 436: 10-21.
[40]
Yang C, Wang C, Chen X, et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas[J]. Int J Cancer, 2013, 132(1): 116-127.
[41]
Ansari KI, Ogawa D, Rooj AK, et al. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor[J]. Cell Rep, 2015, 11(6): 902-909.
[42]
Kim R, Lee S, Lee J, et al. Exosomes derived from microRNA-584 transfected mesenchymal stem cells: novel alternative therapeutic vehicles for cancer therapy[J]. BMB Rep, 2018, 51(8): 406-411.
[43]
Wang J, Che F, Zhang J, et al. Diagnostic and prognostic potential of serum cell-free microRNA-214 in glioma[J]. World Neurosurg, 2019, 125: e1217-e1225.
[44]
Khan AR, Yang X, Fu M, et al. Recent progress of drug nanoformulations targeting to brain[J]. J Control Release, 2018, 291: 37-64.
[45]
Bronisz A, Wang Y, Nowicki MO, et al. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1[J]. Cancer Res, 2014, 74(3): 738-750.
[46]
Munoz JL, Bliss SA, Greco SJ, et al. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity[J]. Mol Ther Nucleic Acids, 2013, 2(10): e126.
[47]
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, et al. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis[J]. Cell Commun Signal, 2020, 18(1): 120.
[48]
Akers JC, Ramakrishnan V, Kim R, et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development[J]. PLoS One, 2013, 8(10): e78115.
[49]
Li Z, Ye L, Wang L, et al. Identification of miRNA signatures in serum exosomes as a potential biomarker after radiotherapy treatment in glioma patients[J]. Ann Diagn Pathol, 2020, 44: 151436.
[50]
Lan F, Yue X, Xia T. Exosomal microRNA-210 is a potentially non-invasive biomarker for the diagnosis and prognosis of glioma[J]. Oncol Lett, 2020, 19(3): 1967-1974.
[1] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[2] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[3] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[4] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[7] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[10] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[13] 程亚飞, 任长远, 李海马, 孙恺, 马亚群. FSTL1基因在胶质瘤发展中作用的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 206-215.
[14] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[15] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
阅读次数
全文


摘要