切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 135 -141. doi: 10.3877/cma.j.issn.2095-123X.2023.03.002

基础研究

MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响
郑薏(), 彭雯雯, 钟月丽   
  1. 361023 厦门,厦门医学院
  • 收稿日期:2023-02-09 出版日期:2023-06-15
  • 通信作者: 郑薏

Effect of electroacupuncture on the expression of reactive astrocyte via regulating microRNA-34a in rats with cerebral ischemia-reperfusion injury

Yi Zheng(), Wenwen Peng, Yueli Zhong   

  1. Xiamen Medical College, Xiamen 361023, China
  • Received:2023-02-09 Published:2023-06-15
  • Corresponding author: Yi Zheng
  • Supported by:
    Education and Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education(JT180648); National Natural Science Fundation of Xiamen Medical College(K2020-06)
引用本文:

郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.

Yi Zheng, Wenwen Peng, Yueli Zhong. Effect of electroacupuncture on the expression of reactive astrocyte via regulating microRNA-34a in rats with cerebral ischemia-reperfusion injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(03): 135-141.

目的

探讨电针"曲池"和"足三里"调控microRNA-34a(miR-34a)对缺血再灌注损伤大鼠缺血周边区反应性星形胶质细胞增殖的影响。

方法

40只雄性SD大鼠随机分为假手术组、模型组、电针组、电针+miR-34a抑制剂组和电针+二甲基亚砜(DMSO)组,每组8只。参照Koizumi方法,制备左侧局灶性大脑中动脉闭塞(MCAO)大鼠模型。术后第1天开始电针大鼠患侧肢体"曲池"、"足三里"穴30 min,1次/d,直至动物处死。比较各组大鼠在电针干预前后的神经行为学评分,同时在电针干预3 d后进行Rota-Rod旋转棒仪行为学检测,免疫荧光染色检测5-溴脱氧尿嘧啶核苷(Brdu)与神经胶质纤维酸性蛋白(GFAP)的共定位情况;逆转录实时定量PCR检测缺血周边区miR-34a相对表达量。

结果

电针干预3 d后,电针组和电针+DMSO组的神经功能缺损评分和在Rota-Rod旋转棒停留时间较模型组明显改善,差异具有统计学意义(P<0.05)。模型组miR-34a的表达较假手术组明显增加,电针组和电针+DMSO组高于模型组,差异具有统计学意义(P<0.05)。模型组和电针组大鼠缺血周围皮质区GFAP+/Brdu+细胞均表达增加,且电针组较模型组增加更明显,电针+miR-34a抑制剂组较电针组和电针+DMSO组表达降低,差异具有统计学意义(P<0.05)。

结论

电针能明显促进脑缺血再灌注大鼠缺血周围皮质区GFAP+/Brdu+的增殖,改善脑缺血大鼠的神经功能缺损及运动功能,可能是通过miR-34a调控。

Objective

To explore the effect of electroacupuncture (EA) with Quchi and Zusanli acupoints on the regulation of microRNA-34a (miR-34a) on the proliferation of reactive astrocytes in the ischemic peripheral area of rats with cerebral ischemia-reperfusion injury.

Methods

A total of 40 male rats were randomly assigned into sham group, model group, EA group, EA+miR-34a inhibitor group and EA+dimethyl sulfoxide (DMSO) group, with 8 rats in each group. Preparation of a left focal middle cerebral artery ischemia-reperfusion injury (MCAO) rat model using the Koizumi method. EA was applied at ipsilateral Quchi and Zusanli after operation, 30 min once a day until animals were sacrificed. The neurological scores of rats in each group before and after the EA intervention were compared, the behavioral Rat Rota-Rod test was performed after 3 d of the EA intervention, and the co-location condition of glial fibrillary acidic protein (GFAP) and 5-bromodeoxyuridine (Brdu) was detected by immunofluorescence staining; Reverse transcription real-time quantitative PCR was used to detect the relative expression of miR-34a in the ischemic peripheral area.

Results

After 3 d of EA intervention, the neurological deficit symptoms and residence time on Rota-Rod rotating rod of MCAO rats were significantly improved compared to the EA group, with a statistically significant difference (P<0.05). The expression of miR-34a in the model group was significantly higher than that in the Sham surgery group, the expression of miR-34a in the EA group and the EA+DMSO group was higher than that in the model group, with a statistically significant difference (P<0.05). The expression of GFAP+/Brdu+ positive cells in the ischemic pericortical area of rats in both the model group and the EA group increased, and the increase was more significant in the EA group compared to the model group, the expression of GFAP+/Brdu+ positive cells in the EA+miR-34a inhibitor group was lower than that of the EA group and the EA+DMSO group, and the differences were statistically significant (P<0.05).

Conclusion

Electroacupuncture could promote the reactive astrocyte proliferation in ischemic peripheral areas by regulation of miR-34a expression.

表1 4组大鼠治疗前后神经功能缺损评分比较(Mean±SE)
Tab.1 Comparison of neurobehavioral deficit scores before and after treatment in 4 groups (Mean±SE)
图1 4组大鼠在Rota-Rod旋转棒停留时间比率比较与模型组比较,aP<0.05;与电针组比较,bP<0.05;与电针+miR-34a抑制剂组比较,cP<0.05;DMSO:二甲基亚砜
Fig.1 Comparison of the ratio of stay time on the Rota-Rod apparatus of 4 groups
表2 4组大鼠电针干预3 d后缺血周围皮质区miR-34a相对表达量(Mean±SE)
Tab.2 Relative expression levels of miR-34a in the ischemic pericortical area of rats in 4 groups after 3 d of electroacupuncture intervention (Mean±SE)
图2 5组大鼠缺血周围皮质区GFAP+/Brdu+细胞免疫荧光双标表达结果红色:GFAP+细胞;绿色:Brdu+细胞;黄色:GFAP+/Brdu+共表达细胞;比例尺=100 mm;GFAP:胶质纤维酸性蛋白;Brdu:5-溴脱氧尿嘧啶核苷;DMSO:二甲基亚砜
Fig.2 Immunofluorescent double labeling of GFAP+/Brdu+ cells in the ischemic pericortical area of rats in 5 groups
表3 4组大鼠在缺血周围皮质区GFAP+/Brdu+细胞表达比较(Mean±SE)
Tab.3 Expression of GFAP+/Brdu+ cells in the ischemic pericortical area of rats in 4 groups (Mean±SE)
[1]
Shehjar F, Maktabi B, Rahman ZA, et al. Stroke: molecular mechanisms and therapies: update on recent developments[J]. Neurochem Int, 2023, 162: 105458. DOI: 10.1016/j.neuint.2022.105458.
[2]
Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients[J]. BMC Microbiol, 2019, 19(1): 191. DOI: 10.1186/s12866-019-1552-1.
[3]
Pekny M, Wilhelmsson U, Tatlisumak T, et al. Astrocyte activation and reactive gliosis-a new target in stroke?[J]. Neurosci Lett, 2019, 689: 45-55. DOI: 10.1016/j.neulet.2018.07.021.
[4]
Aswendt M, Wilhelmsson U, Wieters F, et al. Reactive astrocytes prevent maladaptive plasticity after ischemic stroke[J]. Prog Neurobiol, 2022, 209: 102199. DOI: 10.1016/j.pneurobio.2021.102199.
[5]
Hasel P, Rose IVL, Sadick JS, et al. Neuroinflammatory astrocyte subtypes in the mouse brain[J]. Nat Neurosci, 2021, 24(10): 1475-1487. DOI: 10.1038/s41593-021-00905-6.
[6]
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1): 7-35. DOI: 10.1007/s00401-009-0619-8.
[7]
Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1[J]. Science, 1997, 276(5319): 1699-1702. DOI: 10.1126/science.276.5319.1699.
[8]
Kitchen P, Salman MM, Halsey AM, et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema[J]. Cell, 2020, 181(4): 784-799.e719. DOI: 10.1016/j.cell.2020.03.037.
[9]
徐如祥,高谋.脑损伤炎症反应与干细胞免疫调控研究[J].中华脑科疾病与康复杂志(电子版), 2019, 9(5): 257-261. DOI: 10.3877/cma.j.issn.2095-123X.2019.05.001.
[10]
Sims NR, Yew WP. Reactive astrogliosis in stroke: contributions of astrocytes to recovery of neurological function[J]. Neurochem Int, 2017, 107: 88-103. DOI: 10.1016/j.neuint.2016.12.016.
[11]
Verkhratsky A, Parpura V. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders[J]. Neurobiol Dis, 2016, 85: 254-261. DOI: 10.1016/j.nbd.2015.03.025.
[12]
Verkhratsky A, Ho MS, Vardjan N, et al. General pathophysiology of astroglia[J]. Adv Exp Med Biol, 2019, 1175: 149-179. DOI: 10.1007/978-981-13-9913-8_7.
[13]
Tao J, Xue XH, Chen LD, et al. Electroacupuncture improves neurological deficits and enhances proliferation and differentiation of endogenous nerve stem cells in rats with focal cerebral ischemia[J]. Neurol Res, 2010, 32(2): 198-204. DOI: 10.1179/174313209X414506.
[14]
Li G, Li X, Dong J, et al. Electroacupuncture ameliorates cerebral ischemic injury by inhibiting ferroptosis[J]. Front Neurol, 2021, 12619043. DOI: 10.3389/fneur.2021.619043.
[15]
Yin L, Tang T, Lin Y, et al. Functional connectivity of ipsilateral striatum in rats with ischemic stroke increased by electroacupuncture[J]. J Integr Neurosci, 2022, 21(6): 162. DOI: 10.31083/j.jin2106162.
[16]
Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse[J]. Glia, 2014, 62(12): 2044-2060. DOI: 10.1002/glia.22725.
[17]
Duan R, Wang SY, Wei B, et al. Angiotensin-(1-7) analogue AVE0991 modulates astrocyte-mediated neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in a transgenic mouse model of Alzheimer's disease[J]. J Inflamm Res, 2021, 14: 7007-7019. DOI: 10.2147/JIR.S343575.
[18]
Tsai DY, Hung KH, Lin IY, et al. Uncovering microRNA regulatory hubs that modulate plasma cell differentiation[J]. Sci Rep, 2015, 5: 17957. DOI: 10.1038/srep17957.
[19]
Juenemann M, Yeniguen M, Schleicher N, et al. Impact of bubble size in a rat model of cerebral air microembolization[J]. J Cardiothorac Surg, 2013, 8: 198. DOI: 10.1186/1749-8090-8-198.
[20]
王龙,金保哲,张新中.脑血流监测对大鼠脑缺血模型制备的评价作用[J].中国脑血管病杂志, 2017, 14(5): 254-260. DOI: 10.3969/j.issn.1672-5921.2017.05.007.
[21]
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91. DOI: 10.1161/01.str.20.1.84.
[22]
李忠仁.实验针灸学[M].北京:中国中医药出版社, 2004.
[23]
Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001, 32(11): 2682-2688. DOI: 10.1161/hs1101.098367.
[24]
Rabinstein AA. Update on treatment of acute ischemic stroke[J]. Continuum (Minneap Minn), 2020, 26(2): 268-286. DOI: 10.1212/CON.0000000000000840.
[25]
Chen C, Li M, Lin L, et al. Clinical effects and safety of edaravone in treatment of acute ischaemic stroke: a meta-analysis of randomized controlled trials[J]. J Clin Pharm Ther, 2021, 46(4): 907-917. DOI: 10.1111/jcpt.13392.
[26]
Liu G, Ma HJ, Hu PP, et al. Effects of painful stimulation and acupuncture on attention networks in healthy subjects[J]. Behav Brain Funct, 2013, 7(9): 23. DOI: 10.1186/1744-9081-9-23.
[27]
Berman BM, Langevin HM, Witt CM, et al. Acupuncture for chronic low back pain[J]. N Engl J Med, 2010, 363(5): 454-461.
[28]
Zhang ZJ, Wang XM, McAlonan GM. Neural acupuncture unit: a new concept for interpreting effects and mechanisms of acupuncture[J]. Evid Based Complement Alternat Med, 2012, 2012: 429412. DOI: 10.1155/2012/429412.
[29]
Li SS, Hua XY, Zheng MX, et al. Electroacupuncture treatment improves motor function and neurological outcomes after cerebral ischemia/reperfusion injury[J]. Neural Regen Res, 2022, 17(7): 1545-1555. DOI: 10.4103/1673-5374.330617.
[30]
Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system[J]. Curr Opin Cell Biol, 2015, 32: 121-130. DOI: 10.1016/j.ceb.2015.02.004.
[31]
Robel S, Berninger B, Götz M. The stem cell potential of glia: lessons from reactive gliosis[J]. Nat Rev Neurosci, 2011, 12(2): 88-104. DOI: 10.1038/nrn2978.
[32]
Liu Z, Li Y, Cui Y, et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke[J]. Glia, 2014, 62(12): 2022-2033. DOI: 10.1002/glia.22723.
[33]
Fineberg SK, Datta P, Stein CS, et al. MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation[J]. PLoS One, 2012, 7(6): e38562. DOI: 10.1371/journal.pone.0038562.
[34]
Fan F, Sun A, Zhao H, et al. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2[J]. Curr Pharm Des, 2013, 19(27): 4865-4873. DOI: 10.2174/13816128113199990325.
[35]
Lanjakornsiripan D, Pior BJ, Kawaguchi D, et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers[J]. Nat Commun, 2018, 9(1): 1623. DOI: 10.1038/s41467-018-03940-3.
[1] 邢小炜, 钱琦, 金平. 肝X受体β在电针治疗慢性脑缺血炎性损伤中的作用研究[J]. 中华危重症医学杂志(电子版), 2022, 15(02): 122-126.
[2] 杜明华, 郭润, 张文华, 胡森. 电针足三里穴对肠缺血再灌注损伤大鼠小肠黏膜上皮紧密连接蛋白ZO-1的调节作用[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 315-321.
[3] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[4] 朱东京, 鲜盼盼, 王甜, 贺中正, 杨彦平, 谢非, 龙乾发. 间充质干细胞外泌体对海马星形胶质细胞活化的抑制作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 99-105.
[5] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[6] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[7] 孙阳, 郑晓, 李岩峰, 周凌峰, 杜震. 基于ERAS理念探讨电针联合等速肌力训练对THA术后患者髋关节功能的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 92-100.
[8] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[9] 康晓宇, 刘丽旭. 心肺复苏后全脑缺血再灌注损伤的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 116-120.
[10] 陈爽, 沈燕. 电针参数要素的研究概述[J]. 中华针灸电子杂志, 2022, 11(03): 107-110.
[11] 梁兴森, 李玲, 李嘉, 高彦平. 电针治疗膝骨关节炎的研究进展[J]. 中华针灸电子杂志, 2022, 11(02): 61-64.
[12] 张宁宁, 郭长利, 张弘毅, 卢泽南, 何曼, 陈超, 王华军. 电针促进腕关节三角纤维软骨复合体损伤运动功能康复的临床研究[J]. 中华针灸电子杂志, 2021, 10(04): 133-139.
[13] 何伟. 电针疏密波和连续波治疗周围性面神经麻痹的临床研究[J]. 中华针灸电子杂志, 2021, 10(03): 89-91.
[14] 江哲宇, 蒋天鹏, 周石, 王黎洲. 微小RNA在脑缺血再灌注损伤中的研究现状与进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 75-82.
[15] 许娜, 渠静, 王赛楠, 江炜, 耿晓坤. 大鼠脑缺血再灌注损伤后脑组织高迁移率族蛋白1表达的变化[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 297-301.
阅读次数
全文


摘要