[1] |
Hughes JD, Fattahi N, van Gompel J, et al. Magnetic resonance elastography detects tumoral consistency in pituitary macroadenomas[J]. Pituitary, 2016, 19(3): 286-292.
|
[2] |
王守森,肖德勇.重视垂体腺瘤组织构象的研究[J].中国微侵袭神经外科杂志, 2015, 20(8): 337-339.
|
[3] |
Fang Y, Pei Z, Chen H, et al. Diagnostic value of Knosp grade and modified Knosp grade for cavernous sinus invasion in pituitary adenomas: a systematic review and meta-analysis[J]. Pituitary, 2021, 24(3): 457-464.
|
[4] |
Lambin P, Rios-Velazquez E, LeijenaarR, et al. Radiomics: extracting more information from medicalimages using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
|
[5] |
Zhang Y, Chen C, Tian Z, et al. Differentiation of pituitary adenoma from Rathke cleft cyst: combining MR image features with texture features[J]. Contrast Media Mol Imaging, 2019, 2019: 6584636.
|
[6] |
李雪佳,莫展豪,隋赫,等.基于MR的垂体空细胞腺瘤与其他垂体腺瘤鉴别的影像组学研究[J].中国医疗设备, 2019, 34(4): 29-32, 46.
|
[7] |
Niu J, Zhang S, Ma S, et al. Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images[J]. EurRadiol, 2019, 29(3): 1625-1634.
|
[8] |
Liu YQ, Gao BB, Dong B, et al. Preoperative vascular heterogeneity and aggressiveness assessment of pituitary macroadenoma based on dynamic contrast-enhanced MRI texture analysis[J]. Eur J Radiol, 2020, 129: 109125.
|
[9] |
Ugga L, Cuocolo R, Solari D, et al. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning[J]. Neuroradiology, 2019, 61(12): 1365-1373.
|
[10] |
陈基明,万强,朱浩雨,等.基于常规磁共振成像影像组学模型预测垂体大腺瘤质地的价值[J].中华医学杂志, 2020, 100(45): 3626-3631.
|
[11] |
Cuocolo R, Ugga L, Solari D, et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI[J]. Neuroradiology, 2020, 62(12): 1649-1656.
|
[12] |
Fan Y, Liu Z, Hou B, et al. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma[J]. Eur J Radiol, 2019, 121: 108647.
|
[13] |
Zhang JH, Gu JJ, Ma YM, et al. Uneven distribution of regional blood supply prompts the cystic change of pituitary adenoma[J]. World Neurosurg, 2017, 103: 37-44.
|
[14] |
Chittiboina P, Montgomery BK, Millo C, et al. High-resolution (18) F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease[J]. J Neurosurg, 2015, 122(4): 791-797.
|
[15] |
诸毓文,杨忠,吴越,等.钆对比剂在3D-SPACE序列术前评估垂体瘤中的应用[J].中国医学计算机成像杂志, 2017, 23(5): 402-406.
|
[16] |
聂吉林,孟莉,李臻琰,等.磁共振3D-SPACE序列结合图像融合技术在垂体大腺瘤术前评估中的应用价值[J].中南大学学报(医学版), 2020, 45(8): 980-987.
|
[17] |
Yamamoto J, Kakeda S, Shimajiri S, et al. Tumor consistency of pituitary macroadenomas: predictive analysis on the basis of imaging features with contrast-enhanced 3D FIESTA at 3T[J]. AJNR Am J Neuroradiol, 2014, 35: 297-303.
|
[18] |
Rutland JW, Delman BN, Feldman RE, et al. Utility of 7 tesla MRI for reoperative planning of endoscopic endonasal surgery for pituitary adenomas[J]. J NeurolSurg B Skull Base, 2021, 82: 303-312.
|
[19] |
Rutland JW, Pawha P, Belani P, et al. Tumor T2 signal intensity and stalk angulation correlates with endocrine status in pituitary adenoma patients: a quantitative 7tesla MRI study[J]. Neuroradiology, 2020, 62(4): 473-482.
|
[20] |
张滨.垂体腺瘤18F-FDG PET/CT显像特点及临床初步研究[D].大连:大连医科大学, 2012.
|
[21] |
王浩.神经内分泌肿瘤早期精确诊断及核素靶向治疗初步研究[D].北京:北京协和医学院(清华大学医学部)&中国医学科学院, 2018.
|