[1] |
Patel GK, Khan MA, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications[J]. Sci Rep, 2019, 9(1): 5335.
|
[2] |
Tucci M, Mannavola F, Passarelli A, et al. Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity[J]. Oncotarget, 2018, 9(29): 20826-20837.
|
[3] |
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 127.
|
[4] |
Yeon JH, Jeong HE, Seo H, et al. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts[J]. Acta Biomater, 2018, 76: 146-153.
|
[5] |
Simeoli R, Montague K, Jones HR, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma[J]. Nat Commun, 2017, 8(1): 1778.
|
[6] |
Qing L, Chen H, Tang J, et al. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration[J]. Neurorehabil Neural Repair, 2018, 32(9): 765-776.
|
[7] |
李超然,黄桂林,王帅.间充质干细胞来源外泌体促进损伤组织修复与再生的应用与进展[J].中国组织工程研究, 2018, 22(1): 133-139.
|
[8] |
张静.干细胞外泌体生物学功能及临床应用前景[J].中国美容医学, 2017, 26(4): 136-140.
|
[9] |
蒋欢,刘尧,陈旭.间充质干细胞外泌体应用于组织再生的研究进展[J].中国医科大学学报, 2018, 47(1): 73-77.
|
[10] |
Yousefi F, Ebtekar M, Soudi S, et al. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis[J]. Immunol Lett, 2016, 172: 94-105.
|
[11] |
高振橙,刘欣.间充质干细胞外泌体在神经系统疾病修复过程中的作用与应用[J].中国组织工程研究, 2020, 24(19): 3048-3054.
|
[12] |
Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647.
|
[13] |
Das M, Mayilsamy K, Mohapatra SS, et al. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects[J]. Rev Neurosci, 2019, 30(8): 839-855.
|
[14] |
Li D, Zhang P, Yao X, et al. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury[J]. Front Neurosci, 2018, 12: 845.
|
[15] |
Li G, Xiao L, Qin H, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion[J]. Cell Cycle, 2020, 19(9): 1022-1035.
|
[16] |
Wang W, Sun G, Zhang L, et al. Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans[J]. J Stroke Cerebrovasc Dis, 2014, 23(10): 2607-2613.
|
[17] |
Kang YC, Zhang L, Su Y, et al. MicroRNA-26b regulates the microglial inflammatory response in hypoxia/ischemia and affects the development of vascular cognitive impairment[J]. Front Cell Neurosci, 2018, 12: 154.
|
[18] |
Yang Y, Ye Y, Kong C, et al. MiR-124 Enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway[J]. Neurochem Res, 2019, 44(4): 811-828.
|
[19] |
Li C, Qin T, Liu Y, et al. Microglia-derived exosomal microRNA-151-3p enhances functional healing after spinal cord injury by attenuating neuronal apoptosis via regulating the p53/p21/CDK1 signaling pathway[J]. Front Cell Dev Biol, 2021, 9: 783017.
|
[20] |
Goetzl EJ, Mustapic M, Kapogiannis D, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease[J]. Faseb J, 2016, 30(11): 3853-3859.
|
[21] |
Wu W, Liu J, Yang C, et al. Astrocyte-derived exosome-transported microRNA-34c is neuroprotective against cerebral ischemia/reperfusion injury via TLR7 and the NF-κB/MAPK pathways[J]. Brain Res Bull, 2020, 163: 84-94.
|
[22] |
Long X, Yao X, Jiang Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 89.
|
[23] |
Bu X, Li D, Wang F, et al. Protective role of astrocyte-derived exosomal microRNA-361 in cerebral ischemic-reperfusion injury by regulating the AMPK/mTOR signaling pathway and targeting CTSB[J]. Neuropsychiatr Dis Treat, 2020, 16: 1863-1877.
|
[24] |
Deng Z, Wang J, Xiao Y, et al. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-β-induced neurotoxicity[J]. Theranostics, 2021, 11(9): 4351-4362.
|
[25] |
Ching RC, Kingham PJ. The role of exosomes in peripheral nerve regeneration[J]. Neural Regen Res, 2015, 10(5): 743-747.
|
[26] |
周敏,洪莉,胡鸣,等.外泌体在周围神经损伤中的研究进展[J].医学综述, 2017, 23(13): 2497-2500.
|
[27] |
Hirata K, Kawabuchi M. Myelin phagocytosis by macrophages and nonmacrophages during wallerian degeneration[J]. Microsc Res Tech, 2002, 57(6): 541-547.
|
[28] |
McLean NA, Verge VM. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve[J]. Glia, 2016, 64(9): 1546-1561.
|
[29] |
Ning XJ, Lu XH, Luo JC, et al. Molecular mechanism of microRNA-21 promoting Schwann cell proliferation and axon regeneration during injured nerve repair[J]. RNA Biol, 2020, 17(10): 1508-1519.
|
[30] |
Lin Y, Jiang X, Yin G, et al. Syringic acid promotes proliferation and migration of Schwann cells via down-regulating miR-451-5p[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(12): 1198-1207.
|
[31] |
Li S, Zhang R, Yuan Y, et al. MiR-340 regulates fibrinolysis and axon regrowth following sciatic nerve injury[J]. Mol Neurobiol, 2017, 54(6): 4379-4389.
|
[32] |
柴毅,纪晨星,祝新根,等.外泌体在缺血性脑卒中的研究进展[J].中国病理生理杂志, 2018, 34(3): 572-576.
|
[33] |
Nguyen LH, Ong W, Wang K, et al. Effects of miR-219/miR-338 on microglia and astrocyte behaviors and astrocyte-oligodendrocyte precursor cell interactions[J]. Neural Regen Res, 2020, 15(4): 739-747.
|
[34] |
Xin H, Liu Z, Buller B, et al. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke[J]. J Cereb Blood Flow Metab, 2021, 41(5): 1131-1144.
|
[35] |
Afrang N, Tavakoli R, Tasharrofi N, et al. A critical role for miR-184 in the fate determination of oligodendrocytes[J]. Stem Cell Res Ther, 2019, 10(1): 112.
|
[36] |
Chamberlain KA, Huang N, Xie Y, et al. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2[J]. Neuron, 2021, 109(21): 3456-3472.e3458.
|