切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2022, Vol. 12 ›› Issue (05) : 306 -309. doi: 10.3877/cma.j.issn.2095-123X.2022.05.010

综述

不同细胞来源的外泌体在神经损伤中的作用
高雅浩1, 姜迪2, 安刚1, 靳峰3, 崔昌萌3,()   
  1. 1. 272067 济宁,济宁医学院临床医学院
    2. 250012 济南,山东大学齐鲁医学院
    3. 272029 济宁,济宁医学院附属医院神经外科
  • 收稿日期:2022-03-23 出版日期:2022-10-15
  • 通信作者: 崔昌萌
  • 基金资助:
    国家自然科学基金(81901954)

Role of exosomes secreted from different cells in nerve injury

Yahao Gao1, Di Jiang2, Gang An1, Feng Jin3, Changmeng Cui3,()   

  1. 1. Jining Medical College of Clinical Medicine, Jining 272067, China
    2. Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
    3. Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining 272029, China
  • Received:2022-03-23 Published:2022-10-15
  • Corresponding author: Changmeng Cui
引用本文:

高雅浩, 姜迪, 安刚, 靳峰, 崔昌萌. 不同细胞来源的外泌体在神经损伤中的作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 306-309.

Yahao Gao, Di Jiang, Gang An, Feng Jin, Changmeng Cui. Role of exosomes secreted from different cells in nerve injury[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2022, 12(05): 306-309.

外泌体是细胞主动向胞外分泌的富含多种生物活性物质(如核酸和蛋白质)的脂质膜性囊泡,其相关研究受到了科学界的广泛关注。外泌体包含的核酸等重要物质不仅参与了细胞间的信号转导,而且能够穿过血脑屏障,可能使外泌体在多种神经系统相关疾病的诊断和预后评估中发挥重要作用,并促进神经的修复与再生。鉴于神经系统中大多数细胞都能够分泌外泌体,本文将围绕不同细胞来源的外泌体在神经损伤修复与再生过程中发挥的作用作一综述。

Exosomes are lipid membrane vesicles containing many bioactive substances (such as nucleic acids and proteins) that cells actively secrete into the extracellular space. Exosomes contain nucleic acids and other essential substances, which not only participate in the intercellular signal transduction, but also cross the blood-brain barrier, making it possible to play an essential role in the diagnosis and prognosis evaluation of various nervous systems diseases. At the same time, more and more studies have confirmed that exosomes can promote nerve repair and regeneration. Since most cells in the nervous system can secrete exosomes, this paper will review the role of different cell-derived exosomes in the repair and regeneration of nerve injury.

[1]
Patel GK, Khan MA, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications[J]. Sci Rep, 2019, 9(1): 5335.
[2]
Tucci M, Mannavola F, Passarelli A, et al. Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity[J]. Oncotarget, 2018, 9(29): 20826-20837.
[3]
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 127.
[4]
Yeon JH, Jeong HE, Seo H, et al. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts[J]. Acta Biomater, 2018, 76: 146-153.
[5]
Simeoli R, Montague K, Jones HR, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma[J]. Nat Commun, 2017, 8(1): 1778.
[6]
Qing L, Chen H, Tang J, et al. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration[J]. Neurorehabil Neural Repair, 2018, 32(9): 765-776.
[7]
李超然,黄桂林,王帅.间充质干细胞来源外泌体促进损伤组织修复与再生的应用与进展[J].中国组织工程研究, 2018, 22(1): 133-139.
[8]
张静.干细胞外泌体生物学功能及临床应用前景[J].中国美容医学, 2017, 26(4): 136-140.
[9]
蒋欢,刘尧,陈旭.间充质干细胞外泌体应用于组织再生的研究进展[J].中国医科大学学报, 2018, 47(1): 73-77.
[10]
Yousefi F, Ebtekar M, Soudi S, et al. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis[J]. Immunol Lett, 2016, 172: 94-105.
[11]
高振橙,刘欣.间充质干细胞外泌体在神经系统疾病修复过程中的作用与应用[J].中国组织工程研究, 2020, 24(19): 3048-3054.
[12]
Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647.
[13]
Das M, Mayilsamy K, Mohapatra SS, et al. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects[J]. Rev Neurosci, 2019, 30(8): 839-855.
[14]
Li D, Zhang P, Yao X, et al. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury[J]. Front Neurosci, 2018, 12: 845.
[15]
Li G, Xiao L, Qin H, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion[J]. Cell Cycle, 2020, 19(9): 1022-1035.
[16]
Wang W, Sun G, Zhang L, et al. Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans[J]. J Stroke Cerebrovasc Dis, 2014, 23(10): 2607-2613.
[17]
Kang YC, Zhang L, Su Y, et al. MicroRNA-26b regulates the microglial inflammatory response in hypoxia/ischemia and affects the development of vascular cognitive impairment[J]. Front Cell Neurosci, 2018, 12: 154.
[18]
Yang Y, Ye Y, Kong C, et al. MiR-124 Enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway[J]. Neurochem Res, 2019, 44(4): 811-828.
[19]
Li C, Qin T, Liu Y, et al. Microglia-derived exosomal microRNA-151-3p enhances functional healing after spinal cord injury by attenuating neuronal apoptosis via regulating the p53/p21/CDK1 signaling pathway[J]. Front Cell Dev Biol, 2021, 9: 783017.
[20]
Goetzl EJ, Mustapic M, Kapogiannis D, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease[J]. Faseb J, 2016, 30(11): 3853-3859.
[21]
Wu W, Liu J, Yang C, et al. Astrocyte-derived exosome-transported microRNA-34c is neuroprotective against cerebral ischemia/reperfusion injury via TLR7 and the NF-κB/MAPK pathways[J]. Brain Res Bull, 2020, 163: 84-94.
[22]
Long X, Yao X, Jiang Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 89.
[23]
Bu X, Li D, Wang F, et al. Protective role of astrocyte-derived exosomal microRNA-361 in cerebral ischemic-reperfusion injury by regulating the AMPK/mTOR signaling pathway and targeting CTSB[J]. Neuropsychiatr Dis Treat, 2020, 16: 1863-1877.
[24]
Deng Z, Wang J, Xiao Y, et al. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-β-induced neurotoxicity[J]. Theranostics, 2021, 11(9): 4351-4362.
[25]
Ching RC, Kingham PJ. The role of exosomes in peripheral nerve regeneration[J]. Neural Regen Res, 2015, 10(5): 743-747.
[26]
周敏,洪莉,胡鸣,等.外泌体在周围神经损伤中的研究进展[J].医学综述, 2017, 23(13): 2497-2500.
[27]
Hirata K, Kawabuchi M. Myelin phagocytosis by macrophages and nonmacrophages during wallerian degeneration[J]. Microsc Res Tech, 2002, 57(6): 541-547.
[28]
McLean NA, Verge VM. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve[J]. Glia, 2016, 64(9): 1546-1561.
[29]
Ning XJ, Lu XH, Luo JC, et al. Molecular mechanism of microRNA-21 promoting Schwann cell proliferation and axon regeneration during injured nerve repair[J]. RNA Biol, 2020, 17(10): 1508-1519.
[30]
Lin Y, Jiang X, Yin G, et al. Syringic acid promotes proliferation and migration of Schwann cells via down-regulating miR-451-5p[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(12): 1198-1207.
[31]
Li S, Zhang R, Yuan Y, et al. MiR-340 regulates fibrinolysis and axon regrowth following sciatic nerve injury[J]. Mol Neurobiol, 2017, 54(6): 4379-4389.
[32]
柴毅,纪晨星,祝新根,等.外泌体在缺血性脑卒中的研究进展[J].中国病理生理杂志, 2018, 34(3): 572-576.
[33]
Nguyen LH, Ong W, Wang K, et al. Effects of miR-219/miR-338 on microglia and astrocyte behaviors and astrocyte-oligodendrocyte precursor cell interactions[J]. Neural Regen Res, 2020, 15(4): 739-747.
[34]
Xin H, Liu Z, Buller B, et al. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke[J]. J Cereb Blood Flow Metab, 2021, 41(5): 1131-1144.
[35]
Afrang N, Tavakoli R, Tasharrofi N, et al. A critical role for miR-184 in the fate determination of oligodendrocytes[J]. Stem Cell Res Ther, 2019, 10(1): 112.
[36]
Chamberlain KA, Huang N, Xie Y, et al. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2[J]. Neuron, 2021, 109(21): 3456-3472.e3458.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[6] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[7] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[11] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[12] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[13] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[14] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[15] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
阅读次数
全文


摘要