切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (05) : 257 -263. doi: 10.3877/cma.j.issn.2095-123X.2024.05.001

述评

神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景
张津1, 李欣达1, 徐如祥1,()   
  1. 1.610072 成都,电子科技大学·四川省人民医院神经外科
  • 收稿日期:2024-09-28 出版日期:2024-10-15
  • 通信作者: 徐如祥

Application of neural organs in the treatment of common brain diseases and their prospects in the repair of spinal cord injuries

Jin Zhang1, Xinda Li1, Ruxiang Xu1,()   

  1. 1.Department of Neurosurgery,Sichuan Academy of Medical Sciences&Sichuan Provincial People's Hospital,Chengdu 610072,China
  • Received:2024-09-28 Published:2024-10-15
  • Corresponding author: Ruxiang Xu
引用本文:

张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.

Jin Zhang, Xinda Li, Ruxiang Xu. Application of neural organs in the treatment of common brain diseases and their prospects in the repair of spinal cord injuries[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(05): 257-263.

创伤性脊髓损伤往往伴随着神经元的不可逆损伤与细胞微环境的恶化与重塑,造成患者长期的运动、感觉功能丧失以及自主神经功能障碍。虽然啮齿类和非人类灵长类动物模型在模拟脊髓损害的病理机制与筛选治疗方法上作出了巨大贡献,但是由于物种之间的差异性,动物实验结果往往和临床实际存在差异。近期研究显示,由多能干细胞在三维培养系统形成的功能性神经类器官包含了很多人类大脑或脊髓的关键性特征。相比于二维培养的神经干细胞/神经祖细胞,神经类器官具有更稳定的细胞结构和组织形态、更成熟的神经分化,在帕金森病、阿尔茨海默病、颅脑创伤、脑卒中等疾病模拟中发挥巨大作用。同时,在神经损伤修复中,神经类器官移植后具有较高的存活率,能够促进损伤区域血管再生,与宿主形成功能连接。本文围绕神经类器官在帕金森病、阿尔茨海默病、颅脑创伤、脑卒中的应用及其在脊髓损伤中的应用价值展开述评。

Traumatic spinal cord injury is often accompanied by irreversible damage to neurons and deterioration and remodeling of the cellular microenvironment, causing long-term loss of movement,sensory dyfunction and autonomic dysfunction. Although rodent and non-human primate models have contributed significantly to modelling the pathological mechanisms of spinal cord damage and to screening treatments, animal experimental results often differ from clinical practice due to differences between species. Recent studies shown that functional neural organoids formed from pluripotent stem cells in a three-dimensional culture system contain many key features of the human brain or spinal cord.Compared with the neural stem cells/neural progenitor cells cultured in two dimensions, the neural organoids have more stable cell architecture, tissue morphology and more mature neural differentiation,and,play a significant role in the simulation of diseases such as Parkinson's disease,Alzheimer's disease,traumatic brain injury, and stroke. Meanwhile, in nerve injury repair, neural organoids have a high survival rate after transplantation, and can promote vascular regeneration in the injured area and form functional connections with the host. This review summarizes the application of neural organoids in Parkinson's disease, Alzheimer's disease, traumatic brain injury, stroke, and discusses the application value of spinal cord injury repairment.

[1]
Li C, Wu Z, Zhou L, et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury[J]. Signal Transduct Target Ther,2022,7(1):65.DOI:10.1038/s41392-022-00885-4.
[2]
Ortega MA, Fraile - Martinez O, García - Montero C, et al. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities[J]. Mil Med Res, 2023, 10(1): 26. DOI: 10.1186/s40779-023-00461-z.
[3]
Gong C, Zheng X, Guo F, et al. Human spinal gaba neurons alleviate spasticity and improve locomotion in rats with spinal cord injury[J]. Cell Rep, 2021, 34(12): 108889. DOI: 10.1016/j.celrep.2021.108889.
[4]
Li L, Zhang Y, Mu J, et al. Transplantation of human mesenchymal stem -cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury[J].Nano Lett, 2020, 20(6): 4298-4305. DOI: 10.1021/acs.nanolett.0c00929.
[5]
Xie C, Shen X, Xu X, et al. Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal cord injury[J]. J Neurosci, 2020, 40(13): 2644-2662. DOI: 10.1523/jneurosci.2229-19.2020.
[6]
Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury[J].Nat Med,2017,23(7):818-828.DOI:10.1038/nm.4354.
[7]
Cusimano M, Biziato D, Brambilla E, et al. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord[J]. Brain, 2012, 135(Pt 2):447-460.DOI:10.1093/brain/awr339.
[8]
Zhang J, Li X, Guo L, et al. 3D hydrogel microfibers promote the differentiation of encapsulated neural stem cells and facilitate neuron protection and axon regrowth after complete transactional spinal cord injury[J]. Biofabrication, 2024, 16(3): 035015. DOI:10.1088/1758-5090/ad39a7.
[9]
Ceto S, Sekiguchi KJ, Takashima Y, et al. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury[J]. Cell Stem Cell, 2020, 27(3): 430-440.e5.DOI:10.1016/j.stem.2020.07.007.
[10]
Abematsu M, Tsujimura K, Yamano M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury[J]. J Clin Invest,2010,120(9):3255-3266.DOI:10.1172/jci42957.
[11]
Curtis E, Martin JR, Gabel B, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury[J].Cell Stem Cell,2018,22(6):941-950.e6.DOI:10.1016/j.stem.2018.05.014.
[12]
Daviaud N, Friedel RH, Zou H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex[J].eNeuro,2018,5(6): ENEURO.0219-18.2018.DOI:10.1523/eneuro.0219-18.2018.
[13]
Xu C, Alameri A, Leong W, et al. Multiscale engineering of brain organoids for disease modeling[J]. Adv Drug Deliv Rev, 2024,210:115344.DOI:10.1016/j.addr.2024.115344.
[14]
Wu Y, Cheng J, Qi J, et al. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids[J]. Nat Commun,2024,15(1):4047.DOI:10.1038/s41467-024-48452-5.
[15]
Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature,2017,545(7652):54-59.DOI:10.1038/nature22330.
[16]
Smits LM, Reinhardt L, Reinhardt P, et al. Modeling Parkinson's disease in midbrain-like organoids[J]. NPJ Parkinsons Dis, 2019,5:5.DOI:10.1038/s41531-019-0078-4.
[17]
Zheng X, Han D, Liu W, et al. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson ' s disease[J].Theranostics,2023,13(8):2673-2692.DOI:10.7150/thno.80271.
[18]
Xiang Y, Tanaka Y, Cakir B, et al. hESC - derived thalamic organoids form reciprocal projections when fused with cortical organoids[J]. Cell Stem Cell, 2019, 24(3): 487-497.e7. DOI: 10.1016/j.stem.2018.12.015.
[19]
Huang WK, Wong SZH, Pather SR, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J].Cell Stem Cell,2021,28(9):1670.e10.DOI:10.1016/j.stem.2021.04.006.
[20]
Lee JH, Shin H, Shaker MR, et al. Production of human spinalcord organoids recapitulating neural-tube morphogenesis[J]. Nat Biomed Eng, 2022, 6(4): 435-448. DOI: 10.1038/s41551-022-00868-4.
[21]
Xu J, Fang S, Deng S, et al. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes[J]. Nat Biomed Eng, 2023, 7(3): 253-269. DOI: 10.1038/s41551-022-00963-6.
[22]
Miura Y, Li MY, Birey F, et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells[J]. Nat Biotechnol, 2020, 38(12): 1421-1430. DOI: 10.1038/s41587-020-00763-w.
[23]
Reumann D, Krauditsch C, Novatchkova M, et al. In vitro modeling of the human dopaminergic system using spatially arranged ventral midbrain-striatum-cortex assembloids[J]. Nat Methods, 2023, 20(12): 2034-2047. DOI: 10.1038/s41592-023-02080-x.
[24]
Atamian A, Birtele M, Hosseini N, et al. Human cerebellar organoids with functional purkinje cells[J]. Cell Stem Cell, 2024,31(1):39-51.e6.DOI:10.1016/j.stem.2023.11.013.
[25]
Schafer ST, Mansour AA, Schlachetzki JCM, et al. An in vivo neuroimmune organoid model to study human microglia phenotypes[J].Cell,2023,186(10):2111-2126.e20.DOI:10.1016/j.cell.2023.04.022.
[26]
Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.DOI:10.1016/j.stem.2016.07.005.
[27]
Chen X, Sun G, Tian E, et al. Modeling sporadic Alzheimer's disease in human brain organoids under serum exposure[J]. Adv Sci(Weinh),2021,8(18):e2101462.DOI:10.1002/advs.202101462.
[28]
Bolognin S, Fossépré M, Qing X, et al. 3D cultures of Parkinson's disease - specific dopaminergic neurons for high content phenotyping and drug testing[J]. Adv Sci (Weinh), 2019, 6(1):1800927.DOI:10.1002/advs.201800927.
[29]
Park JC, Jang SY, Lee D, et al. A logical network-based drugscreening platform for Alzheimer's disease representing pathological features of human brain organoids[J]. Nat Commun, 2021, 12(1):280.DOI:10.1038/s41467-020-20440-5.
[30]
Martínez-Cerdeño V, Noctor SC, Espinosa A, et al. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats[J]. Cell Stem Cell,2010,6(3):238-250.DOI:10.1016/j.stem.2010.01.004.
[31]
Wang SN, Wang Z, Xu TY, et al. Cerebral organoids repair ischemic stroke brain injury[J]. Transl Stroke Res, 2020, 11(5):983-1000.DOI:10.1007/s12975-019-00773-0.
[32]
Bergmann S, Lawler SE, Qu Y, et al. Blood - brain - barrier organoids for investigating the permeability of CNS therapeutics[J]. Nat Protoc, 2018, 13(12): 2827-2843. DOI: 10.1038/s41596-018-0066-x.
[33]
Anderson MA, O'Shea TM, Burda JE, et al. Required growth facilitators propel axon regeneration across complete spinal cord injury[J]. Nature, 2018, 561(7723): 396-400. DOI: 10.1038/s41586-018-0467-6.
[34]
Bao Z, Fang K, Miao Z, et al. Human cerebral organoid implantation alleviated the neurological deficits of traumatic brain injury in mice[J]. Oxid Med Cell Longev, 2021, 2021: 6338722.DOI:10.1155/2021/6338722.
[35]
Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation[J]. Mol Psychiatry, 2021, 26(7): 2964-2976. DOI:10.1038/s41380-020-00910-4.
[36]
Fandel TM, Trivedi A, Nicholas CR, et al. Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury[J]. Cell Stem Cell, 2016, 19(4): 544-557. DOI: 10.1016/j.stem.2016.08.020.
[37]
Wang Z, Zhao H, Tang X, et al. CNS organoid surpasses cellladen microgel assembly to promote spinal cord injury repair[J].Research (Wash D C), 2022, 2022: 9832128. DOI: 10.34133/2022/9832128.
[38]
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances[J]. Brain, 2024, 147(3): 766-793.DOI:10.1093/brain/awad392.
[39]
Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol,2018,36(5):432-441.DOI:10.1038/nbt.4127.
[40]
Park DS, Kozaki T, Tiwari SK, et al. iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer[J].Nature, 2023, 623(7986): 397-405. DOI: 10.1038/s41586-023-06713-1.
[41]
Popova G, Soliman SS, Kim CN, et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids[J]. Cell Stem Cell, 2021, 28(12):2153-2166.e6.DOI:10.1016/j.stem.2021.08.015.
[42]
Andersen J, Revah O, Miura Y, et al. Generation of functional human 3D cortico-motor assembloids[J].Cell,2020,183(7):1913-1929.e26.DOI:10.1016/j.cell.2020.11.017.
[43]
Revah O, Gore F, Kelley KW, et al. Maturation and circuit integration of transplanted human cortical organoids[J]. Nature,2022,610(7931):319-326.DOI:10.1038/s41586-022-05277-w.
[1] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[2] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[3] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[4] 浦凌宵, 诸俊浩, 陶亮, 王峰, 王萌, 管文贤. 低黏附性胃癌PET/CT影像学特征和脂代谢相关机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 255-260.
[5] 司钦亮, 毕世龙, 焦慧骁, 李世照, 陈哲禹, 武玉东. 精索去分化脂肪肉瘤两例并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 585-590.
[6] 杨攀, 黄晓寒, 邓才霞, 周利航, 周向东, 罗虎. SMARCA4缺失的胸部未分化肿瘤临床特征及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 529-534.
[7] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[8] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[9] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
[12] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[13] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[14] 刘娟丽, 马四清, 乌仁塔娜. 髓源性抑制细胞在脓毒症中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 271-278.
[15] 杨菲, 刘腾飞, 赵志军, 李睿聪, 张颉, 刘妍, 赵珍. 血清维生素水平与分化型甲状腺癌的关联性研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 633-640.
阅读次数
全文


摘要