切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 146 -153. doi: 10.3877/cma.j.issn.2095-123X.2024.03.004

临床研究

中重型颅脑创伤患者住院时间延长的危险因素分析及预测模型构建
王绅1, 王如海1,(), 李春1, 杨震1, 孙菲琳1   
  1. 1. 236063 安徽阜阳,阜阳市第五人民医院神经外科
  • 收稿日期:2023-10-09 出版日期:2024-06-15
  • 通信作者: 王如海

Risk factors analysis and prediction model construction of prolonged length of stay in patients with moderate and severe traumatic brain injury

Shen Wang1, Ruhai Wang1,(), Chun Li1, Zhen Yang1, Feilin Sun1   

  1. 1. Department of Neurosurgery, Fuyang Fifth People's Hospital, Fuyang 236063, China
  • Received:2023-10-09 Published:2024-06-15
  • Corresponding author: Ruhai Wang
  • Supported by:
    Research Project of the Health Commission of Fuyang City, Anhui Province(FY2023-019); Horizontal Medical Project of Fuyang Normal University(2024FYNUEY05)
引用本文:

王绅, 王如海, 李春, 杨震, 孙菲琳. 中重型颅脑创伤患者住院时间延长的危险因素分析及预测模型构建[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 146-153.

Shen Wang, Ruhai Wang, Chun Li, Zhen Yang, Feilin Sun. Risk factors analysis and prediction model construction of prolonged length of stay in patients with moderate and severe traumatic brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(03): 146-153.

目的

分析中重型颅脑创伤(TBI)患者住院时间延长(PLOS)的独立危险因素,并构建预测模型。

方法

回顾性分析阜阳市第五人民医院神经外科自2018年1月至2023年1月收治的533例中重型TBI患者的临床资料。按7∶3的比例随机分为训练集(374例)和验证集(159例),PLOS定义为住院时间≥28 d,按照是否发生PLOS将训练集分为PLOS组(60例)和非PLOS组(314例)。采用多因素Logistic回归分析研究PLOS发生的独立危险因素,基于上述独立危险因素采用R软件构建列线图预测模型,在训练集和验证集中分别绘制受试者工作特征(ROC)曲线、校正曲线和临床决策曲线分析(DCA),并进行Hosmer-Lemeshow拟合优度检验。

结果

PLOS组与非PLOS组的首次CT扫描时间、入院时GCS评分、体温、硬膜下血肿、血钾水平、血清总钙浓度、C-反应蛋白、甲状腺素、凝血酶原时间、活化部分凝血活酶时间、纤维蛋白原水平、D-二聚体及合并上消化道出血比较,差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,体温>36.82℃、硬膜下血肿、血清总钙浓度≤1.97 mmol/L、D-二聚体>13.12 mg/L和合并上消化道出血是中重型TBI患者PLOS的独立危险因素。预测模型ROC曲线结果显示,训练集曲线下面积(AUC)为0.770(95%CI:0.699~0.840),验证集AUC为0.822(95%CI:0.754~0.889)。训练集和验证集的校正曲线均显示预测概率与实际概率趋于一致。DCA结果显示,列线图预测模型对中重型TBI患者PLOS发生风险有较好的预测效能。Hosmer-Lemeshow拟合优度检验中,训练集χ2=2.053,P=0.979;验证集χ2=4.566,P=0.803。

结论

体温>36.82℃、硬膜下血肿、血清总钙浓度≤1.97 mmol/L、D-二聚体>13.12 mg/L和合并上消化道出血是中重型TBI患者PLOS的独立危险因素,由此构建的预测模型具有良好的区分度、拟合优度和临床适用性,可为临床决策提供参考。

Objective

To analyze risk factors of prolonged length of stay (PLOS) in patients with moderate and severe traumatic brain injury (TBI), and to construct a prediction model.

Methods

A retrospective cohort study was performed to analyze the clinical data of 533 patients with moderate and severe TBI admitted to the Neurosurgery Department of Fuyang Fifth People's Hospital from January 2018 to January 2023, which were divided into a training set (n=374) and an validation set (n=159) according to the ratio of 7 to 3. Patients in the training set were grouped into two groups according to the hospital stay, namely PLOS group (hospital stay≥28 d) and non-PLOS group (hospital stay<28 d). Multivariate Logistic regression analyses were used to assess the risk factors of PLOS. The R software was used to establish a nomogram prediction model based on the above risk factors. The receiver operating characteristic (ROC) curve, calibration curve and clinical decision curve analysis (DCA) were plotted in the training set and the validation set, and Hosmer-Lemeshow goodness-of-fit test was performed.

Results

The first CT scan time after injury, GCS score at admission, body temperature, subdural hematoma, plasma potassium level, serum calcium concentration, C-reactive protein, thyroxine, prothrombin time, activated partial thromboplastin time, fibrinogen level, D-dimer, and combined upper gastrointestinal hemorrhage were correlated with PLOS in patients with moderate and severe TBI. Logistic regression analysis showed that body temperature>36.82℃, subdural hematoma, serum calcium concentration≤1.97 mmol/L, D-dimer>13.12 mg/L and combined upper gastrointestinal hemorrhage were independent risk factors of PLOS in moderate and severe TBI patients. The ROC of the nomogram prediction model indicated that area under curve (AUC) of the training set was 0.770 (95%CI: 0.699-0.840) and AUC of the validation set was 0.822 (95%CI: 0.754-0.889). The calibration curve showed that the predicted probability was consistent with the actual situation in both the training set and validation set. DCA showed that the nomogram prediction model presented excellent performance in predicting PLOS. In Hosmer-Lemeshow goodness-of-fit test, χ2 value of the training set was 2.053 (P=0.979), with validation set of 4.566 (P=0.803).

Conclusion

Body temperature>36.82℃, subdural hematoma, serum calcium concentration≤1.97 mmol/L, D-dimer>13.12 mg/L and combined upper gastrointestinal hemorrhage were independent risk factors of PLOS in moderate and severe TBI patients. The nomogram prediction model based on these 5 predictive variables shows a good predictive performance, goodness-of-fit, and clinical applicability, which can provide a reference for clinical decision making.

表1 训练集中2组患者的临床资料比较
Tab.1 Comparison of clinical data between two groups of patients in the training set
项目 PLOS组(n=60) 非PLOS组(n=314) χ2/t/U P
性别[例(%)]     0.002 0.966
39(65.0) 205(65.3)    
21(35.0) 109(34.7)    
年龄(岁,Mean±SD) 60.3±15.2 57.7±14.5 -1.481 0.139
受伤原因[例(%)]     3.802 0.149
交通伤 31(51.7) 123(39.2)    
摔跌伤 16(26.7) 90(28.7)    
其他 13(21.7) 101(32.2)    
基础疾病[例(%)]        
高血压 16(26.7) 75(23.9) 0.212 0.645
糖尿病 9(15.0) 38(12.1) 0.385 0.535
首次CT扫描时间[h,M(Q1,Q3)] 1.4(1.0,2.0) 2.0(1.3,2.6) -3.474 0.001
入院时GCS评分(分,Mean±SD) 8.7±3.6 10.3±2.3 -3.226 0.001
体温[℃,M(Q1,Q3)] 36.8(36.7,36.9) 36.8(36.7,36.8) -3.234 0.001
血压[mmHg,M(Q1,Q3)]        
收缩压 135.0(135.0,142.0) 135.0(135.0,142.0) -0.302 0.763
舒张压 85.0(85.0,90.0) 85.0(85.0,88.0) -1.690 0.091
血糖[mmol/L,M(Q1,Q3)] 7.0(7.0,7.5) 7.0(7.0,7.2) -1.833 0.067
实验室检查指标[M(Q1,Q3)]        
血小板计数(109/L) 192.5(142.8,243.8) 193.5(157.5,235.0) -0.395 0.693
血钾水平(mmol/L) 3.2(2.9,3.6) 3.5(3.2,3.8) -3.516 <0.001
血清总钙浓度(mmol/L) 2.1(1.9,2.2) 2.2(2.1,2.3) -3.713 <0.001
C-反应蛋白(mg/L) 1.1(1.1,1.1) 1.3(1.1,1.3) -4.068 <0.001
甲状腺素(μg/dL) 7.8(7.8,7.8) 7.81(7.81,7.81) -12.579 <0.001
凝血酶时间(s) 16.7(15.3,18.3) 16.8(15.4,18.3) -0.310 0.757
凝血酶原时间(s) 12.5(11.7,13.2) 12.0(11.2,12.8) -2.696 0.007
活化部分凝血活酶时间(s) 27.2(24.0,32.6) 25.6(23.6,28.9) -2.467 0.014
纤维蛋白原水平(g/L) 2.2(1.7,3.0) 2.5(2.0,3.1) -2.201 0.028
D-二聚体(mg/L) 19.1(4.7,36.4) 6.9(3.1,18.0) -3.505 <0.001
颅骨骨折[例(%)] 31(51.7) 160(51.0) 0.010 0.920
硬膜外血肿[例(%)] 29(48.3) 111(35.4) 3.625 0.057
硬膜下血肿[例(%)] 23(38.3) 56(17.8) 12.705 <0.001
脑内血肿[例(%)] 11(18.3) 35(11.1) 2.412 0.120
合并上消化道出血[例(%)] 10(16.7) 11(3.5) 16.470 <0.001
表2 中重型颅脑创伤患者住院时间延长的多因素Logistic分析
Tab.2 Multivariate Logistic regression analysis of prolonged length of stay in patients with moderate and severe traumatic brain injury
表3 预测PLOS的独立危险因素的ROC曲线分析结果
Tab.3 ROC curve analysis results for predicting independent risk factors of PLOS
图1 中重型颅脑创伤患者住院时间延长风险预测列线图
Fig.1 Predictive nomogram model for the risk of prolonged length of stay in patients with moderate and severe traumatic brain injury
图2 列线图模型预测中重型颅脑创伤患者住院时间延长风险的ROC曲线A:训练集;B:验证集
Fig.2 ROC curve of predicting prolonged length of stay in patients with moderate and severe traumatic brain injury by the nomogram model
图3 列线图模型在训练集和验证集中的校正曲线A:训练集;B:验证集
Fig.3 Calibration curve for predicting the risk of prolonged length of stay in patients with moderate and severe traumatic brain injury by the nomogram model
图4 列线图模型评估中重型颅脑创伤患者住院时间延长风险的决策曲线分析A:训练集;B:验证集
Fig.4 Decision curve analysis for predicting the risk of prolonged length of stay in patients with moderate and severe traumatic brain injury by the nomogram model
[1]
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3): 286-295. DOI: 10.1016/s1474-4422(18)30469-1.
[2]
Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults[J]. Lancet Neurol, 2008, 7(8): 728-741. DOI: 10.1016/s1474-4422(08)70164-9.
[3]
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16(12): 987-1048. DOI: 10.1016/s1474-4422(17)30371-x.
[4]
Shen H, Liu H, He J, et al. Risk factors of prognosis in older patients with severe brain injury after surgical intervention[J]. Eur J Med Res, 2023, 28(1): 479. DOI: 10.1186/s40001-023-01473-0.
[5]
刘彪,巍山,关永胜.基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J].中华神经创伤外科电子杂志, 2024, 10(1): 22-27. DOI: 10.3877/cma.j.issn.2095-9141.2024.01.004.
[6]
Sivashankar SA, Swamiyappan SS, Visweswaran V, et al. Biochemical and radiological factors for prognostication of traumatic brain injury: an institutional experience[J]. Cureus, 2023, 15(6): e40999. DOI: 10.7759/cureus.40999.
[7]
Mader MM, Rotermund R, Lefering R, et al. The faster the better? Time to first CT scan after admission in moderate-to-severe traumatic brain injury and its association with mortality[J]. Neurosurg Rev, 2021, 44(5): 2697-2706. DOI: 10.1007/s10143-020-01456-3.
[8]
Smith JO, Shiffman ML, Behnke M, et al. Incidence of prolonged length of stay after orthotopic liver transplantation and its influence on outcomes[J]. Liver Transpl, 2009, 15(3): 273-279. DOI: 10.1002/lt.21731.
[9]
Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management[J]. Med Clin North Am, 2020, 104(2): 213-238. DOI: 10.1016/j.mcna.2019.11.001.
[10]
Birg T, Ortolano F, Wiegers EJA, et al. Brain temperature influences intracranial pressure and cerebral perfusion pressure after traumatic brain injury: a center-TBI study[J]. Neurocrit Care, 2021, 35(3): 651-661. DOI: 10.1007/s12028-021-01294-1.
[11]
Bao L, Chen D, Ding L, et al. Fever burden is an independent predictor for prognosis of traumatic brain injury[J]. PLoS One, 2014, 9(3): e90956. DOI: 10.1371/journal.pone.0090956.
[12]
肖新如,赵继宗,李京生.体温对脑外伤患者预后的影响[J].中华医学杂志, 2002, 82(9): 634-636. DOI: 10.3760/j:issn:0376-2491.2002.09.017.
[13]
Erkens R, Wernly B, Masyuk M, et al. Admission body temperature in critically ill patients as an independent risk predictor for overall outcome[J]. Med Princ Pract, 2020, 29(4): 389-395. DOI: 10.1159/000505126.
[14]
Choksi EJ, Mukherjee K, Kamal KM, et al. Length of stay, cost, and outcomes related to traumatic subdural hematoma in inpatient setting in the United States[J]. Brain Inj, 2022, 36(10-11): 1237-1246. DOI: 10.1080/02699052.2022.2110285.
[15]
Aromatario M, Torsello A, D'Errico S, et al. Traumatic epidural and subdural hematoma: epidemiology, outcome, and dating[J]. Medicina (Kaunas), 2021, 57(2): 125. DOI: 10.3390/medicina57020125.
[16]
Tong WS, Zheng P, Xu JF, et al. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury[J]. Neuroradiology, 2011, 53(5): 305-309. DOI: 10.1007/s00234-010-0659-8.
[17]
Wang GH, Yan Y, Shen HP, et al. The clinical characteristics of electrolyte disturbance in patients with moderate and severe traumatic brain injury who underwent craniotomy and its influence on prognosis[J]. J Korean Neurosurg Soc, 2023, 66(3): 332-339. DOI: 10.3340/jkns.2022.0078.
[18]
Harring TR, Deal NS, Kuo DC. Disorders of sodium and water balance[J]. Emerg Med Clin North Am, 2014, 32(2): 379-401. DOI: 10.1016/j.emc.2014.01.001.
[19]
严智,赵天全,王恩任.钙离子在创伤性脑损伤中的致病机制研究[J].中华神经创伤外科电子杂志, 2019, 5(6): 373-376. DOI: 10.3877/cma.j.issn.2095-9141.2019.06.012.
[20]
夏维,严洁,毛文君.重症患者离子钙水平对预后的影响[J].中华急诊医学杂志, 2016, 25(10): 1272-1277. DOI: 10.3760/cma.j.issn.1671-0282.2016.10.012.
[21]
Badarni K, Harush N, Andrawus E, et al. Association between admission ionized calcium level and neurological outcome of patients with isolated severe traumatic brain injury: a retrospective cohort study[J]. Neurocrit Care, 2023, 39(2): 386-398. DOI: 10.1007/s12028-023-01687-4.
[22]
Manuel VR, Martin SA, Juan SR, et al. Hypocalcemia as a prognostic factor in mortality and morbidity in moderate and severe traumatic brain injury[J]. Asian J Neurosurg, 2015, 10(3): 190-194. DOI: 10.4103/1793-5482.161171.
[23]
Olson JD. D-dimer: an overview of hemostasis and fibrinolysis, assays, and clinical applications[J]. Adv Clin Chem, 2015, 69: 1-46. DOI: 10.1016/bs.acc.2014.12.001.
[24]
Nakae R, Takayama Y, Kuwamoto K, et al. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury[J]. J Neurotrauma, 2016, 33(7): 688-695. DOI: 10.1089/neu.2015.4039.
[25]
王如海,曹祥记,王绅,等.凝血指标对中型创伤性脑损伤患者进展性出血性损伤的预测能力[J].中华神经创伤外科电子杂志, 2023, 9(6): 343-349. DOI: 10.3877/cma.j.issn.2095-9141.2023.06.005.
[26]
Tian CW, Chen XX, Shi L, et al. Machine learning applications for the prediction of extended length of stay in geriatric hip fracture patients[J]. World J Orthop, 2023, 14(10): 741-754. DOI: 10.5312/wjo.v14.i10.741.
[27]
袁受涛,孙加奎,郑曙云. D-二聚体在预测外科脓毒症患者预后中的价值[J].感染、炎症、修复, 2014, 15(3): 140-143. DOI: 10.3969/j.issn.1672-8521.2014.03.004.
[28]
刘华兴.脑外伤病人上消化道出血的防治附: 180例报告[J].泸州医学院学报, 2009, 32(5): 522-524. DOI: 10.3969/j.issn.1000-2669.2009.05.020.
[29]
Leverich M, Afifi AM, Rejent K, et al. Mortality and morbidity following initiation of anticoagulant or antiplatelet treatment for blunt cerebrovascular injury[J]. J Vasc Surg, 2023, 78(3): 788-796.e6. DOI: 10.1016/j.jvs.2023.05.031.
[30]
Kaya E, Karaca MA, Aldemir D, et al. Predictors of poor outcome in gastrointestinal bleeding in emergency department[J]. World J Gastroenterol, 2016, 22(16): 4219-4225. DOI: 10.3748/wjg.v22.i16.4219.
[1] 张阳, 纽燕娜, 常丽蓉, 唐国华, 赵萍. ERAS理念下肝棘球蚴病术后并发症风险预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 287-290.
[2] 丁关棣, 黄云, 曹震, 刘刚. 胃癌根治术后感染性并发症预测:基于真实世界数据的Nomogram模型开发与验证[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 261-266.
[3] 解良婕, 王剑, 阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 242-246.
[4] 段丽君, 董鑫, 潘若楠, 任梦然, 卢晓倩, 曹殿波. 术前误诊良性肺结节与典型恶性肺结节临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 46-50.
[5] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[6] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[7] 肖增丽, 杜安琪, 孙瑶, 赵慧颖, 安友仲. 脑出血术后AKI发生的危险因素分析及预测模型建立[J]. 中华重症医学电子杂志, 2024, 10(02): 157-163.
[8] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[9] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[10] 赵倩, 刘文超, 李玺琳, 章邱东. 老年急性脑梗死诱发胃肠损伤的风险因素分析及模型构建[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 213-217.
[11] 薛黎, 高孝忠. 幽门螺杆菌阳性患者服药依从性预测模型的建立[J]. 中华胃肠内镜电子杂志, 2024, 11(01): 23-27.
[12] 李智毓, 李昌顶, 聂鑫, 倪琨涵, 韩泳涛, 冷雪峰. 食管鳞状细胞癌手术切缘阳性大样本回顾性研究及其临床预测模型的建立与验证[J]. 中华胸部外科电子杂志, 2024, 11(01): 31-39.
[13] 解艳红, 陈凌燕, 邵晓露, 沈珊珊, 李方舟, 蓝肖燕. 老年住院患者衰弱风险预测模型研究进展[J]. 中华老年病研究电子杂志, 2024, 11(01): 11-17.
[14] 赖敏, 林碧玲, 王亚文, 林玉禧, 欧开雅. 中青年脑卒中患者重返工作的影响因素分析及预测模型构建[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 145-152.
[15] 邓仙裕, 罗钰璇, 张溱乐, 余展鹏, 彭亮. 自发性脑出血重症患者30 d死亡风险预测模型的建立及验证[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 121-128.
阅读次数
全文


摘要