切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (06) : 373 -378. doi: 10.3877/cma.j.issn.2095-123X.2024.06.009

综述

细胞外囊泡在多发性硬化疾病诊断中的新进展
张志勔1, 李晓玲2,()   
  1. 1.730000 兰州,兰州大学第二医院(第二临床医学院)神经内科
    2.730000 兰州,兰州大学第二医院(第二临床医学院)康复医学科
  • 收稿日期:2024-11-08 出版日期:2024-12-15
  • 通信作者: 李晓玲
  • 基金资助:
    国家自然科学基金(82360254)甘肃省科技计划项目(24JRRA359)兰州市城关区科技计划项目(2023RCCX0012)

New advances in the diagnosis of multiple sclerosis with extracellular vesicles

Zhimian Zhang1, Xiaoling Li2,()   

  1. 1.Department of Neurology,The Second Hospital&Clinical Medical School,Lanzhou University,Lanzhou 730000,China
    2.Department of Rehabilitation Medicine,The Second Hospital & Clinical Medical School,Lanzhou 730000,China
  • Received:2024-11-08 Published:2024-12-15
  • Corresponding author: Xiaoling Li
引用本文:

张志勔, 李晓玲. 细胞外囊泡在多发性硬化疾病诊断中的新进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(06): 373-378.

Zhimian Zhang, Xiaoling Li. New advances in the diagnosis of multiple sclerosis with extracellular vesicles[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(06): 373-378.

细胞外囊泡(EV)作为细胞间信息传递的重要介质,可以稳定携带蛋白质、脂质、核酸等物质,其表面与亲代细胞含有共同的特异性标志,可以作为高度敏感性的特异性生物标志物用于临床诊断。多发性硬化(MS)是中枢神经系统自身免疫性炎性脱髓鞘疾病,尚无特异性的诊断标志物,近年来MS 的发病率和患病率呈逐渐增高的趋势。EV 可以用来协助明确MS 的临床诊断、甄别临床分型、监控疾病复发、推测疾病预后,受到了越来越多的关注。本文围绕EV 在MS临床诊断中的应用展开综述。

Extracellular vesicles (EV),as important mediators of intercellular communication,can stably carry proteins,lipids,nucleic acids,and other substances. Their surface shares specific markers with the parent cells,making them highly sensitive and specific biomarkers for clinical diagnosis.Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system,and there are currently no specific diagnostic markers for it. In recent years,the incidence and prevalence of MS have gradually increased. EV can assist in clarifying the clinical diagnosis of MS,distinguishing clinical subtypes,monitoring disease relapse,and predicting disease prognosis,which has attracted increasing attention.This article reviews the application of EV in the clinical diagnosis of MS.

图1 中枢神经系统中的细胞外囊泡穿过血脑屏障进入血液循环的示意图
Fig.1 Schematic diagram of extracellular vesicles crossing the blood-brain barrier and entering the bloodstream in the central nervous system
表1 EV相关的特异性标志物
Tab.1 EV-related specific biomarker
[1]
中华医学会神经病学分会神经免疫学组.多发性硬化诊断与治疗中国指南(2023 版)[J]. 中华神经科杂志,2024,57(1):10-23.DOI:10.3760/cma.j.cn113694-20230918-00173.Chinese Society of Neuroimmunology. Chinese guidelines for diagnosis and treatment of multiple sclerosis (2023 edition)[J].Chin J Neurol,2024,57(1):10-23.DOI:10.3760/cma.j.cn113694-20230918-00173.
[2]
Tian DC,Zhang C,Yuan M,et al. Incidence of multiple sclerosis in China:a nationwide hospital-based study[J].Lancet Reg Health West Pac,2020,1:100010.DOI:10.1016/j.lanwpc.2020.100010.
[3]
Welsh JA,Goberdhan DCI,O ' Driscoll L,et al. Minimal information for studies of extracellular vesicles (MISEV2023):from basic to advanced approaches[J]. J Extracell Vesicles,2024,13(2):e12404.DOI:10.1002/jev2.12404.
[4]
EL Andaloussi S,Mäger I,Breakefield XO,et al. Extracellular vesicles:Biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov,2013,12(5):347-357.DOI:10.1038/nrd3978.
[5]
Iannotta D,Amruta A,Kijas AW,et al. Entry and exit of extracellular vesicles to and from the blood circulation[J]. Nat Nanotechnol,2024,19(1):13-20. DOI:10.1038/s41565-023-01522-z.
[6]
Morad G,Carman CV,Hagedorn EJ,et al. Tumor - derived extracellular vesicles breach the intact blood-brain barrier via transcytosis[J]. ACS Nano,2019,13(12):13853 - 13865. DOI:10.1021/acsnano.9b04397.
[7]
Hervé F,Ghinea N,Scherrmann JM. CNS delivery via adsorptive transcytosis[J].AAPS J,2008,10(3):455-472.DOI:10.1208/s12248-008-9055-2.
[8]
Riazifar M,Mohammadi MR,Pone EJ,et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano,2019,13(6):6670-6688. DOI:10.1021/acsnano.9b01004.
[9]
Lessey-Morillon EC,Osborne LD,Monaghan-Benson E,et al.The RhoA guanine nucleotide exchange factor,LARG,mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration[J]. J Immunol,2014,192(7):3390-3398.DOI:10.4049/jimmunol.1302525.
[10]
Zeng Z,Li Y,Pan Y,et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis[J]. Nat Commun,2018,9(1):5395.DOI:10.1038/s41467-018-07810-w.
[11]
Treps L,Perret R,Edmond S,et al. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles[J]. J Extracell Vesicles,2017,6(1):1359479. DOI:10.1080/20013078.2017.1359479.
[12]
Tominaga N,Kosaka N,Ono M,et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier[J]. Nat Commun,2015,6:6716.DOI:10.1038/ncomms7716.
[13]
De La Cruz EM. How cofilin severs an actin filament[J]. Biophys Rev,2009,1(2):51-59.DOI:10.1007/s12551-009-0008-5.
[14]
Lai CP,Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies[J]. Front Physiol,2012,3:228.DOI:10.3389/fphys.2012.00228.
[15]
Gardiner C,Di Vizio D,Sahoo S,et al. Techniques used for the isolation and characterization of extracellular vesicles:results of a worldwide survey[J]. J Extracell Vesicles,2016,5:32945. DOI:10.3402/jev.v5.32945.
[16]
Li J,Lu S,Chen F,et al.Unveiling the hidden role of extracellular vesicles in brain metastases:a comprehensive review[J]. Front Immunol,2024,15:1388574.DOI:10.3389/fimmu.2024.1388574.
[17]
Welton JL,Loveless S,Stone T,et al. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis[J]. J Extracell Vesicles,2017,6(1):1369805.DOI:10.1080/20013078.2017.1369805.
[18]
Scolding NJ,Frith S,Linington C,et al. Myelin-oligodendrocyte glycoprotein (MOG) is a surface marker of oligodendrocyte maturation[J]. J Neuroimmunol,1989,22(3):169-176. DOI:10.1016/0165-5728(89)90014-3.
[19]
Jy W,Minagar A,Jimenez JJ,et al. Endothelial microparticles(EMP) bind and activate monocytes:elevated EMP - monocyte conjugates in multiple sclerosis[J]. Front Biosci,2004,9:3137-3144.DOI:10.2741/1466.
[20]
Lombardi M,Parolisi R,Scaroni F,et al. Detrimental and protective action of microglial extracellular vesicles on myelin lesions:astrocyte involvement in remyelination failure[J]. Acta Neuropathol,2019,138(6):987-1012.DOI:10.1007/s00401-019-02049-1.
[21]
Krämer-Albers EM,Bretz N,Tenzer S,et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins:Trophic support for axons?[J]. Proteomics Clin Appl,2007,1(11):1446-1461.DOI:10.1002/prca.200700522.
[22]
Torres Iglesias G,Fernández-Fournier M,Botella L,et al. Brain and immune system - derived extracellular vesicles mediate regulation of complement system,extracellular matrix remodeling,brain repair and antigen tolerance in Multiple sclerosis[J]. Brain Behav Immun,2023,113:44-55.DOI:10.1016/j.bbi.2023.06.025.
[23]
Blandford SN,Fudge NJ,Corkum CP,et al. Analysis of plasma using flow cytometry reveals increased immune cell - derived extracellular vesicles in untreated relapsing-remitting multiple sclerosis[J]. Front Immunol,2022,13:803921. DOI:10.3389/fimmu.2022.803921.
[24]
Groen K,Maltby VE,Scott RJ,et al. Concentrations of plasmaborne extracellular particles differ between multiple sclerosis disease courses and compared to healthy controls[J]. Mult Scler Relat Disord,2020,45:102446.DOI:10.1016/j.msard.2020.102446.
[25]
Mazzucco M,Mannheim W,Shetty SV,et al. CNS endothelial derived extracellular vesicles are biomarkers of active disease in multiple sclerosis[J]. Fluids Barriers CNS,2022,19(1):13. DOI:10.1186/s12987-021-00299-4.
[26]
Torres Iglesias G,Fernández-Fournier M,López-Molina M,et al.Dual role of peripheral B cells in multiple sclerosis:emerging remote players in demyelination and novel diagnostic biomarkers[J].Front Immunol,2023,14:1224217.DOI:10.3389/fimmu.2023.1224217.
[27]
Agliardi C,Guerini FR,Zanzottera M,et al. Myelin basic protein in oligodendrocyte-derived extracellular vesicles as a diagnostic and prognostic biomarker in multiple sclerosis:a pilot study[J].Int J Mol Sci,2023,24(1):894.DOI:10.3390/ijms24010894.
[28]
D'Ambrosio A,Zamboni S,Camerini S,et al. Proteomic profile of extracellular vesicles from plasma and CSF of multiple sclerosis patients reveals disease activity - associated EAAT2[J]. J Neuroinflammation,2024,21(1):217. DOI:10.1186/s12974-024-03148-x.
[29]
Duan J,Lv A,Guo Z,et al. CX3CR1+/UCHL1+ microglial extracellular vesicles in blood:a potential biomarker for multiple sclerosis[J]. J Neuroinflammation,2024,21(1):254. DOI:10.1186/s12974-024-03243-z.
[30]
Vietzen H,Berger SM,Kühner LM,et al. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis[J]. Cell,2023,186(26):5705-5718.e13. DOI:10.1016/j.cell.2023.11.015.
[31]
Levin LI,Munger KL,Rubertone MV,et al.Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis[J]. JAMA,2005,293(20):2496-500.DOI:10.1001/jama.293.20.2496.
[32]
Fernández-Fournier M,López-Molina M,Torres Iglesias G,et al.Antibody content against Epstein-Barr virus in blood extracellular vesicles correlates with disease activity and brain volume in patients with relapsing-remitting multiple sclerosis[J]. Int J Mol Sci,2023,24(18):14192.DOI:10.3390/ijms241814192.
[33]
Bhargava P,Nogueras - Ortiz C,Kim S,et al. Synaptic and complement markers in extracellular vesicles in multiple sclerosis[J]. Mult Scler,2021,27(4):509-518. DOI:10.1177/135245852 0924590.
[34]
Cuomo-Haymour N,Bergamini G,Russo G,et al. Differential expression of serum extracellular vesicle miRNAs in multiple sclerosis:disease-stage specificity and relevance to pathophysiology[J].Int J Mol Sci,2022,23(3):1664.DOI:10.3390/ijms23031664.
[35]
Ebrahimkhani S,Beadnall HN,Wang C,et al. Serum exosome microRNAs predict multiple sclerosis disease activity after fingolimod treatment[J]. Mol Neurobiol,2020,57(2):1245-1258.DOI:10.1007/s12035-019-01792-6.
[36]
Peruzzotti-Jametti L,Bernstock JD,Willis CM,et al. Neural stem cells traffic functional mitochondria via extracellular vesicles[J].PLoS Biol,2021,19(4):e3001166. DOI:10.1371/journal.pbio.3001166.
[37]
Ladakis DC,Yao PJ,Vreones M,et al. Mitochondrial measures in neuronally enriched extracellular vesicles predict brain and retinal atrophy in multiple sclerosis[J]. Mult Scler,2022,28(13):2020-2026.DOI:10.1177/13524585221106290.
[38]
江飞,黄会青,陈文东,等.中国多发性硬化症患者认知功能障碍现状及危险因素分析[J]. 神经损伤与功能重建,2022,17(12):775-778.DOI:10.16780/j.cnki.sjssgncj.20220236.Jiang F,Huang HQ,Chen WD,et al. Current status of cognitive impairment and analysis of risk factors in patients with multiple sclerosis in China[J]. Neural Injury and Functional Reconstruction,2022,17(12):775-778.DOI:10.16780/j.cnki.sjssgncj.20220236.
[39]
Ladakis DC,Vreones M,Blommer J,et al.Synaptic protein loss in extracellular vesicles reflects brain and retinal atrophy in people with multiple sclerosis[J]. Neurol Neuroimmunol Neuroinflamm,2024,11(4):e200257.DOI:10.1212/NXI.0000000000200257.
[40]
Riazifar M,Mohammadi MR,Pone EJ,et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano,2019,13(6):6670-6688. DOI:10.1021/acsnano.9b01004.
[41]
Xiao Y,Tian J,Wu WC,et al. Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis[J]. Bioact Mater,2021,9:373-384.DOI:10.1016/j.bioactmat.2021.07.017.
[42]
Osorio-Querejeta I,Carregal-Romero S,Ayerdi-Izquierdo A,et al. MiR-219a-5p Enriched Extracellular Vesicles Induce OPC Differentiation and EAE Improvement More Efficiently Than Liposomes and Polymeric Nanoparticles[J]. Pharmaceutics,2020,12(2):186.DOI:10.3390/pharmaceutics12020186.
[43]
Niu W,Xiao Q,Wang X,et al.A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicinloaded heparin-based nanoparticles for glioma therapy[J]. Nano Lett,2021,21(3):1484-1492.DOI:10.1021/acs.nanolett.0c04753.
[1] 朱彩霞, 刘志兴, 谌芳群, 王婧玲, 姚谨, 彭星琦, 毛毅, 陈莉. 超声黏弹性成像技术对≤3 cm 乳腺肿块良恶性的鉴别诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1095-1102.
[2] 朱燕彤, 吴青青, 冯丽, 熊晓蔚, 王晶晶. 早孕期胎儿头面部超声标志物对开放性脊柱裂的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1005-1010.
[3] 张晓燕, 李文波, 姜玉新, 朱庆莉, 张青, 王红燕, 李建初. 甲状腺髓样癌超声诊断质量分析及改进措施[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1024-1029.
[4] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[5] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[6] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[7] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[8] 谢田伟, 庞于樊, 吴丽. 超声引导下不同消融术对甲状腺良性结节体积缩减率、复发率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 80-83.
[9] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[10] 陈洁莹, 许晶莹, 黄泽萍. 超声在女性压力性尿失禁诊断与疗效评估中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 14-20.
[11] 余承澍, 刘红枝, 林科灿, 林起柱, 黄霆峰, 周伟平, 程张军, 楼健颖, 郑树国, 毕新宇, 王剑明, 郭伟, 李富宇, 王坚, 郑亚民, 李敬东, 程石, 曾永毅. 肝内胆管细胞癌术后极早期复发的危险因素[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 53-59.
[12] 谭雷, 王等娣, 张浩, 丹增卓玛, 龙怡, 吴泽倩. 超声造影在肝破裂诊断中的应用:一例西藏地区肝破裂引发的思考[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 113-117.
[13] 时吉庆, 李坤, 陈一峰. 罕见巨大胆总管囊肿术后九年新发肝脏肿瘤一例[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 126-127.
[14] 尹泽新, 杨继林, 李有尧, 吴美龙, 刘利平. 肝癌微血管侵犯的术前预测研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 128-134.
[15] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 肝移植术后急性移植物抗宿主病诊疗中国专家共识(2024 版)[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 1-12.
阅读次数
全文


摘要