切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (02) : 100 -107. doi: 10.3877/cma.j.issn.2095-123X.2025.02.006

基础研究

脑深部太赫兹刺激对麻醉下恒河猴脑功能的调控作用
赵坤1, 陈凯天2, 王悦3, 杨霄3, 葛芊芊2, 韩帅2, 张浩然4, 孙培健2, 刘傲轩2, 何江弘2,()   
  1. 1. 100144 北京,首都医科大学附属北京康复医院神经康复中心
    2. 100070 北京,首都医科大学附属北京天坛医院神经外科
    3. 100850 北京,军事科学院国防科技创新研究院
    4. 100190 北京,中国科学院自动化研究所
  • 收稿日期:2025-03-05 出版日期:2025-04-15
  • 通信作者: 何江弘
  • 基金资助:
    北京市自然科学基金(7232046)国家自然科学基金(82272118)

Regulation of brain function in anesthetized rhesus monkeys by deep brain THz wave stimulation

Kun Zhao1, Kaitian Chen2, Yue Wang3, Xiao Yang3, Qianqian Ge2, Shuai Han2, Haoran Zhang4, Peijian Sun2, Aoxuan Liu2, Jianghong He2,()   

  1. 1. Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Beijing 100144, China
    2. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
    3. National Defense Science and Technology Innovation Research Institute, Academy of Military Sciences, Beijing 100850, China
    4. Institute of Automation, Chinese Academy of Science, Beijing 100190, China
  • Received:2025-03-05 Published:2025-04-15
  • Corresponding author: Jianghong He
引用本文:

赵坤, 陈凯天, 王悦, 杨霄, 葛芊芊, 韩帅, 张浩然, 孙培健, 刘傲轩, 何江弘. 脑深部太赫兹刺激对麻醉下恒河猴脑功能的调控作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 100-107.

Kun Zhao, Kaitian Chen, Yue Wang, Xiao Yang, Qianqian Ge, Shuai Han, Haoran Zhang, Peijian Sun, Aoxuan Liu, Jianghong He. Regulation of brain function in anesthetized rhesus monkeys by deep brain THz wave stimulation[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(02): 100-107.

目的

采用非人灵长类(恒河猴)模型,探索太赫兹(THz)刺激对麻醉状态下脑功能的调控作用,系统评估不同刺激参数对全脑功能网络的影响,为深部脑区精准调控方法的开发提供实验依据。

方法

采用硬通道光纤植入技术对3只麻醉恒河猴中央丘脑核团施加THz辐射干预,设置不同功率(1、5、10、30、50、90 mW)和不同时长(5、10、60、100、300 s)的刺激参数,共6次实验。实验过程中,通过立体定向脑电图电极和皮层电极记录脑电信号,构建7个特征频段(δ/θ/α/β/全频段/低γ/高γ)的时频图谱,并采用小波变换计算功率谱密度,分析不同频段的全脑平均功率谱变化。此外,通过锁相值矩阵量化全脑功能连接的动态变化。

结果

THz刺激对脑电活动及脑网络连接具有强度和时长依赖性调控作用,其中γ频段(30~80 Hz)功率在1 mW和10 mW刺激下明显升高,而90 mW刺激未产生规律性变化。10 mW刺激增强了0.5~30 Hz频段的全脑连接性,而50 mW刺激则降低该频段的全脑连接性。此外,不同刺激时长的效应差异较大,10 mW-60 s的参数组合在增强γ振荡和全脑同步性方面表现最佳。影像学复查显示在THz刺激后均未出现明显的脑组织水肿或出血。

结论

THz刺激可通过剂量依赖方式双向调节麻醉恒河猴的全脑功能连接,其中10 mW-60 s的刺激参数在增强γ振荡和全脑同步性方面效果最佳。THz神经调控技术具有可观的生物学效应和良好的安全性,有望成为安全有效的新型脑功能调控手段。

Objective

To explore the regulatory effects of Tera Hertz (THz) stimulation on brain function under anesthesia using a non-human primate (rhesus monkey) model, and systematically evaluate the impact of different stimulation parameters on global brain functional networks, aiming to provide experimental evidence for developing precise deep brain modulation methods.

Methods

THz radiation intervention was applied to the Centromedian-Parafascicular complex of the thalamus in 3 anesthetized rhesus monkeys (totaling 6 experiments) using hard-channel fiber optic implantation technology.Stimulation parameters included different power levels (1, 5, 10, 30, 50, 90 mW) and durations (5, 10, 60,100, 300 s). During the experiments, stereotactic electroencephalography and electrocorticography were used to record brain signals. Time-frequency maps were constructed for seven characteristic frequency bands (δ, θ, α, β, full-band, low-γ, high-γ), and wavelet transform was employed to calculate power spectral density to analyze changes in the average power spectrum across different frequency bands.Additionally, phase-locking value matrices were used to quantify dynamic changes in global brain functional connectivity.

Results

THz stimulation exhibited intensity- and duration-dependent regulatory effects on brain electrical activity and network connectivity. Specifically, γ-band (30-80 Hz)power significantly increased under 1 mW and 10 mW stimulation, while 90 mW stimulation did not produce consistent changes. Furthermore, 10 mW stimulation significantly enhanced global connectivity in the 0.5-30 Hz frequency range, whereas 50 mW stimulation reduced connectivity in this range. The effects of different stimulation durations varied considerably, with the 10 mW-60 s parameter combination showing optimal performance in enhancing γ oscillations and global synchrony. Post-stimulation imaging review revealed no significant brain tissue edema or hemorrhage, indicating good biosafety of the stimulation method.

Conclusions

THz stimulation can bidirectionally modulate global brain functional connectivity in anesthetized rhesus monkeys in a dose-dependent manner, demonstrating significant neurobiological effects. The 10 mW-60 s parameter combination showed the best performance in promoting γ oscillations and global synchrony, suggesting that THz neuromodulation technology has the potential to become a novel, safe, and effective method for brain function modulation.

图1 不同功率太赫兹刺激5、100 s的γ段时频分析结果 A:1 mW刺激5 s;B:1 mW刺激100 s;C:10 mW刺激5 s;D:10 mW刺激100 s;E:90 mW刺激5 s;F:90 mW刺激100 s
Fig.2 Results of γ-band time-frequency analysis of Tera Hertz stimulation with different power at 5 s and 100 s stimulus durations
表1 不同刺激条件下的全脑连接性变化
Tab.1 Global brain connectivity changes under different stimulus conditions
表2 10 mW刺激在0.5~30 Hz频段的连接性变化
Tab.2 Changes of connectivity in the 0.5-30 Hz band for 10 mW stimulation
图2 12种刺激条件下0.5~30 Hz频段的全脑连接性变化
Fig.2 Global brain connectivity changes of 0.5-30 Hz band under 12 stimulus conditions
图3 在10 mW-60 s的THz刺激下0.5~30 Hz频段各通道之间的刺激时-刺激前连接性变化 CM-Pf:丘脑中央中核束旁复合体;GPi:内侧苍白球
Fig.3 Changes in On-Pre stimulus connectivity between channels in the 0.5-30 Hz band under 10 mW-60 s THz stimulation conditions
图4 恒河猴THz刺激后的头颅影像学结果 A~C:THz光纤移除2周后复查MRI,标记处为植入针道,植入靶点为CM-Pf(A:冠状位;B:矢状位;C:轴位);D:电极植入后头颅X线;Thz:太赫兹
Fig.4 Cranial imaging results of rhesus monkey after THz stimulation
[1]
中国医师协会神经修复专业委员会意识障碍与促醒学组. 慢性意识障碍诊断与治疗中国专家共识[J]. 中华神经医学杂志, 2020, 19(10): 977-982. DOI: 10.3760/cma.j.cn115354-20200701-00525.Group of Disorders of Consciousness and Conscious-promotion,Professional Committee of Neurorepair of Chinese Medical Doctor Association. Diagnoses and treatments of prolonged disorders of consciousness: an experts consensus[J]. Chin J Neuro Med, 2020,19(10): 977-982. DOI: 10.3760/cma.j.cn115354-20200701-00525.
[2]
Giacino JT, Fins JJ, Laureys S, et al. Disorders of consciousness after acquired brain injury: the state of the science[J]. Nat Rev Neurol, 2014, 10(2): 99-114. DOI: 10.1038/nrneurol.2013.279.
[3]
Thibaut A, Schiff N, Giacino J, et al. Therapeutic interventions in patients with prolonged disorders of consciousness[J]. Lancet Neurol, 2019, 18(6): 600-614. DOI: 10.1016/s1474-4422(19)30031-6.
[4]
Kristensen TT, Withayachumnankul W, Jepsen PU, et al.Modeling terahertz heating effects on water[J]. Opt Express, 2010,18(5): 4727-4739. DOI: 10.1364/oe.18.004727.
[5]
Tsurkan MV, Smolyanskaya OA, Bespalov VG, et al. Changing growth of neurites of sensory ganglion by terahertz radiation[J].SPIE Proceedings, 2012, 8261: 190-197. DOI: 10.1117/12.909350.
[6]
Tan SZ, Tan PC, Luo LQ, et al. Exposure effects of terahertz waves on primary neurons and neuron-like cells under nonthermal conditions[J]. Biomed Environ Sci, 2019, 32(10): 739-754. DOI:10.3967/bes2019.094.
[7]
党圆圆, 韩新勇, 孙洪吉, 等. 非人灵长类动物多靶点颅内电极植入的技术方法及效果分析[J]. 空军军医大学学报, 2025, 46(3): 299-304. DOI: 10.13276/j.issn.2097-1656.2025.03.004.Dang YY, Han XY, Sun HJ, et al. Technique and accuracy of multi-target intracranial electrode implantation in non-human primates[J]. J Air Force Med Univ, 2025, 46(3): 299-304. DOI:10.13276/j.issn.2097-1656.2025.03.004.
[8]
Naro A, Bramanti P, Leo A, et al. Towards a method to differentiate chronic disorder of consciousness patients' awareness:the low-resolution brain electromagnetic tomography analysis[J]. J Neurol Sci, 2016, 368: 178-183. DOI: 10.1016/j.jns. 2016.07.016.
[9]
Ma S, Li Z, Gong S, et al. High frequency electromagnetic radiation stimulates neuronal growth and hippocampal synaptic transmission[J]. Brain Sci, 2023, 13(4): 686. DOI: 10.3390/brainsci 13040686.
[10]
Wilmink GJ, Grundt JE. Invited review article: current state of research on biological effects of terahertz radiation[J]. J Infrared Millim Terahertz Waves, 2011, 32(10): 1074-1122. DOI: 10.1007/s10762-011-9794-5.
[11]
Ol'shevskaia IuS, Kozlov AS, Petrov AK, et al. Influence of terahertz (submillimeter) laser radiation on neurons in vitro[J]. Zh Vyssh Nerv Deiat Im I P Pavlova, 2009, 59(3): 353-359.
[12]
Zhao X, Zhang M, Liu Y, et al. Terahertz exposure enhances neuronal synaptic transmission and oligodendrocyte differentiation in vitro[J]. iScience, 2021, 24(12): 103485. DOI: 10.1016/j.isci.2021.103485.
[13]
He J, Zhang H, Dang Y, et al. Electrophysiological characteristics of CM-pf in diagnosis and outcome of patients with disorders of consciousness[J]. Brain Stimul, 2023, 16(5): 1522-1532. DOI:10.1016/j.brs.2023.09.021.
[14]
Edlow BL, Claassen J, Schiff ND, et al. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies[J]. Nat Rev Neurol, 2021, 17(3): 135-156. DOI: 10.1038/s41582-020-00428-x.
[15]
Cherkasova OP, Serdyukov DS, Ratushnyak AS, et al. Effects of terahertz radiation on living cells: a review[J]. Optics & Spectroscopy,2020, 128(6): 855. DOI: 10.1134/S0030400X20060041.
[16]
Bourne N, Clothier RH, D'arienzo M, et al. The effects of terahertz radiation on human keratinocyte primary cultures and neural cell cultures[J]. Altern Lab Anim, 2008, 36(6): 667-684. DOI: 10.1177/026119290803600610.
[17]
Pu Z, Wu Y, Zhu Z, et al. A new horizon for neuroscience:terahertz biotechnology in brain research[J]. Neural Regeneration Research, 2025, 20(2): 309-325. DOI: 10.4103/nrr.Nrr-d-23-00872.
[18]
Liu X, Qiao Z, Chai Y, et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation[J].Proc Natl Acad Sci USA, 2021, 118(10): e2015685118. DOI:10.1073/pnas.2015685118.
[19]
Yu Y, Wu K, Yang X, et al. Terahertz photons improve cognitive functions in posttraumatic stress disorder[J]. Research (Wash DC),2023, 6: 0278. DOI: 10.34133/research.0278.
[20]
Zhang J, He Y, Liang S, et al. Non-invasive, opsin-free midinfrared modulation activates cortical neurons and accelerates associative learning[J]. Nat Commun, 2021, 12(1): 2730. DOI:10.1038/s41467-021-23025-y.
[21]
Reukov AS, Naymushin AV, Simakov KV, et al. Use of the infrared radiation modulated by terahertz frequencies in complex therapy of patients with acute ischemic stroke[J]. Arterial'naya Gipertenziya (Arterial Hypertension), 2016, 22(1): 94-102. DOI:10.18705/1607-419x-2016-22-1-94-102.
[22]
Kirichuk VF, Antipova ON, Krylova YA. Effect of continuous irradiation with terahertz electromagnetic waves of the NO frequency range on behavioral reactions of male albino rats under stress conditions[J]. Bull Exp Biol Med, 2014, 157(2): 184-189.DOI: 10.1007/s10517-014-2521-1.
[23]
Kirichuk VF, Efimova NV, Andronov EV. Effect of high power terahertz irradiation on platelet aggregation and behavioral reactions of albino rats[J]. Bull Exp Biol Med, 2009, 148(5): 746-749. DOI: 10.1007/s10517-010-0807-5.
[24]
Bondar NP, Kovalenko IL, Avgustinovich DF, et al. Behavioral effect of terahertz waves in male mice[J]. Bull Exp Biol Med,2008, 145(4): 401-405. DOI: 10.1007/s10517-008-0102-x.
[25]
Song Z, Sun Y, Liu P, et al. Terahertz wave alleviates comorbidity anxiety in pain by reducing the binding capacity of nanostructured glutamate molecules to GluA2[J]. Research (Wash DC), 2024, 7: 0535. DOI: 10.34133/research.0535.
[26]
Ma S, Ding P, Zhou Z, et al. Terahertz radiation modulates neuronal morphology and dynamics properties[J]. Brain Sci, 2024,14(3): 279. DOI: 10.3390/brainsci14030279.
[27]
Bogomazova AN, Vassina EM, Goryachkovskaya TN, et al. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation[J]. Scientific Reports, 2015, 5: 7749. DOI: 10.1038/srep 07749.
[28]
De Amicis A, Sanctis SD, Cristofaro SD, et al. Biological effects of in vitro thz radiation exposure in human foetal fibroblasts[J].Mutat Res Genet Toxicol Environ Mutagen, 2015, 793: 150-160.DOI: 10.1016/j.mrgentox.2015.06.003.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?