切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 153 -160. doi: 10.3877/cma.j.issn.2095-123X.2025.03.004

功能神经外科

胶质母细胞瘤免疫治疗挑战与cGAS-STING通路纳米策略研究进展
张传鹏1, 张瑜廉2, 党韩寒3, 何昆1, 陈鹏宇3, 张昀昇1, 张黎2, 于炎冰2,()   
  1. 1100029 北京,北京大学中日友好临床医学院
    2100029 北京,中日友好医院神经外科
    3100730 北京,中国医学科学院北京协和医学院
  • 收稿日期:2025-03-11 出版日期:2025-06-15
  • 通信作者: 于炎冰

Research advances on glioblastoma immunotherapy challenges and cGAS-STING pathway nanostrategies

Chuanpeng Zhang1, Yulian Zhang2, Hanhan Dang3, Kun He1, Pengyu Chen3, Yunsheng Zhang1, Li Zhang2, Yanbing Yu2,()   

  1. 1Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
    2Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
    3Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2025-03-11 Published:2025-06-15
  • Corresponding author: Yanbing Yu
  • Supported by:
    National Key R&D Program of China(2022YFC2402500); National Natural Science Foundation of China(32300816, 32471035); Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(L222034); Beijing Natural Science Foundation Funded Project(L242112); Elite Medical Professionals Project of China-Japan Friendship Hospital(ZRJY2024-QM07); National High Level Hospital Clinical Research Funding(2022-NHLHCRF-YS-05)
引用本文:

张传鹏, 张瑜廉, 党韩寒, 何昆, 陈鹏宇, 张昀昇, 张黎, 于炎冰. 胶质母细胞瘤免疫治疗挑战与cGAS-STING通路纳米策略研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 153-160.

Chuanpeng Zhang, Yulian Zhang, Hanhan Dang, Kun He, Pengyu Chen, Yunsheng Zhang, Li Zhang, Yanbing Yu. Research advances on glioblastoma immunotherapy challenges and cGAS-STING pathway nanostrategies[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(03): 153-160.

胶质母细胞瘤(GBM)是中枢神经系统最具侵袭性的恶性肿瘤,其治疗因血脑屏障(BBB)阻隔、肿瘤微环境(TME)的深度免疫抑制及肿瘤异质性而面临巨大挑战,导致现有免疫疗法(如免疫检查点抑制剂)效果有限。这促使研究转向调动先天免疫系统,其中cGAS-STING通路作为胞质DNA的关键感受器和Ⅰ型干扰素(IFN-I)产生的核心枢纽,在激发抗肿瘤免疫中扮演重要角色。然而,GBM常通过STING基因启动子甲基化沉默和胞外环状GMP-AMP降解等机制抑制该通路的活性。近年来,纳米材料作为先进的药物递送系统,为克服这些障碍提供了新的策略。本文系统性地综述了cGAS-STING通路的生物学功能及其在GBM中被抑制的关键因素,并重点评述利用纳米材料跨越BBB、实现STING激动剂的靶向递送、胞内释放及环境响应性调控的研究进展,深入探讨基于纳米技术的STING通路激活策略如何与免疫检查点抑制剂、肿瘤疫苗、放化疗等现有疗法协同,以增强抗肿瘤效果、克服免疫抑制并诱导持久免疫记忆,并总结当前该领域面临的主要挑战(如体内递送效率评估、生物安全性、个体化治疗策略等),旨在为开发更有效的GBM免疫治疗新策略提供参考。

Glioblastoma (GBM) remains one of the most aggressive malignancies of the central nervous system. Its treatment faces significant hurdles due to the blood-brain barrier (BBB), the profoundly immunosuppressive tumor microenvironment (TME), and inherent tumor heterogeneity, which limit the efficacy of current immunotherapies, including immune checkpoint inhibitors. This has shifted focus towards harnessing the innate immune system, particularly the cGAS-STING pathway. As a critical sensor of cytosolic DNA and a central hub for type I interferon (IFN-I) production, this pathway plays a vital role in initiating anti-tumor immunity. However, its activity is often suppressed in GBM through mechanisms such as epigenetic silencing of the STING gene promoter and extracellular cyclic GMP-AMP degradation. Recently, nanomaterials have emerged as advanced drug delivery systems offering novel strategies to overcome these obstacles. This review aims to systematically summarize the biological functions of the cGAS-STING pathway, the key factors contributing to its suppression in GBM, and critically evaluates the advancements in utilizing nanomaterials for crossing the BBB, achieving targeted delivery, intracellular release, and environment-responsive regulation of STING agonists. Furthermore, it delves into how nanotechnology-based STING pathway activation strategies can synergize with existing therapies like immune checkpoint blockade, tumor vaccines, radiotherapy, and chemotherapy to enhance anti-tumor efficacy, overcome immunosuppression, and induce durable immune memory. Finally, this review outlines the major challenges currently facing the field (including in vivo delivery assessment, biosafety, and personalized therapeutic approaches), intending to provide insights for the development of more effective immunotherapy strategies against GBM.

[1]
Price M, Ballard C, Benedetti J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2017-2021[J]. Neuro Oncol, 2024, 26(Supplement_6): vi1-vi85. DOI: 10.1093/neuonc/noae145.
[2]
van den Bent MJ, Geurts M, French PJ, et al. Primary brain tumours in adults[J]. Lancet, 2023, 402(10412): 1564-1579. DOI: 10.1016/s0140-6736(23)01054-1.
[3]
Ross JL, Velazquez Vega J, Plant A, et al. Tumour immune landscape of paediatric high-grade gliomas[J]. Brain, 2021, 144(9): 2594-2609. DOI: 10.1093/brain/awab155.
[4]
Yeo AT, Rawal S, Delcuze B, et al. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression[J]. Nat Immunol, 2022, 23(6): 971-984. DOI: 10.1038/s41590-022-01215-0.
[5]
Kirschenbaum D, Xie K, Ingelfinger F, et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma[J]. Cell, 2024, 187(1): 149-165. e123. DOI: 10.1016/j.cell.2023.11.032.
[6]
Quail DF, Joyce JA. The microenvironmental landscape of brain tumors[J]. Cancer Cell, 2017, 31(3): 326-341. DOI: 10.1016/j.ccell.2017.02.009.
[7]
Lakshmanachetty S, Mitra SS. Mapping the tumor-infiltrating immune cells during glioblastoma progression[J]. Nat Immunol, 2022, 23(6): 826-828. DOI: 10.1038/s41590-022-01223-0.
[8]
Liu Y, Zhou F, Ali H, et al. Immunotherapy for glioblastoma: current state, challenges, and future perspectives[J]. Cell Mol Immunol, 2024, 21(12): 1354-1375. DOI: 10.1038/s41423-024-01226-x.
[9]
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer[J]. Nat Immunol, 2024, 25(7): 1144-1157. DOI: 10.1038/s41590-024-01872-3.
[10]
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521. DOI: 10.1038/s41580-020-0244-x.
[11]
Lin H, Liu C, Hu A, et al. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives[J]. J Hematol Oncol, 2024, 17(1): 31. DOI: 10.1186/s13045-024-01544-7.
[12]
Gong Z, Zhou D, Wu D, et al. Challenges and material innovations in drug delivery to central nervous system tumors[J]. Biomaterials, 2025, 319: 123180. DOI: 10.1016/j.biomaterials.2025.123180.
[13]
Ceccarelli M, Barthel FP, Malta TM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma[J]. Cell, 2016, 164(3): 550-563. DOI: 10.1016/j.cell.2015.12.028.
[14]
Barthel L, Hadamitzky M, Dammann P, et al. Glioma: molecular signature and crossroads with tumor microenvironment[J]. Cancer Metastasis Rev, 2022, 41(1): 53-75. DOI: 10.1007/s10555-021-09997-9.
[15]
Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications[J]. Cancer Discov, 2021, 11(3): 575-590. DOI: 10.1158/2159-8290.Cd-20-1474.
[16]
Weller M, Wen PY, Chang SM, et al. Glioma[J]. Nat Rev Dis Primers, 2024, 10(1): 33. DOI: 10.1038/s41572-024-00516-y.
[17]
Rustenhoven J, Kipnis J. Bypassing the blood-brain barrier[J]. Science, 2019, 366(6472): 1448-1449. DOI: 10.1126/science.aay0479.
[18]
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41. DOI: 10.1038/s41568-019-0205-x.
[19]
Broekman ML, Maas SLN, Abels ER, et al. Multidimensional communication in the microenvirons of glioblastoma[J]. Nat Rev Neurol, 2018, 14(8): 482-495. DOI: 10.1038/s41582-018-0025-8.
[20]
Dunn GP, Cloughesy TF, Maus MV, et al. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy[J]. Neuro Oncol, 2020, 22(10): 1425-1438. DOI: 10.1093/neuonc/noaa154.
[21]
Gan Y, Li X, Han S, et al. The cGAS/STING pathway: a novel target for cancer therapy[J]. Front Immunol, 2021, 12: 795401. DOI: 10.3389/fimmu.2021.795401.
[22]
Low JT, Brown MC, Reitman ZJ, et al. Understanding and therapeutically exploiting cGAS/STING signaling in glioblastoma[J]. J Clin Invest, 2024, 134(2): e163452. DOI: 10.1172/jci163452.
[23]
Chen C, Xu P. Cellular functions of cGAS/STING signaling[J]. Trends Cell Biol, 2023, 33(8): 630-648. DOI: 10.1016/j.tcb.2022.11.001.
[24]
Liang JL, Jin XK, Deng XC, et al. Targeting activation of cGAS-STING signaling pathway by engineered biomaterials for enhancing cancer immunotherapy[J]. Materials Today, 2024, 78: 46. DOI:10.1016/j.mattod.2024.07.004.
[25]
Dvorkin S, Cambier S, Volkman HE, et al. New frontiers in the cGAS/STING intracellular DNA-sensing pathway[J]. Immunity, 2024, 57(4): 718-730. DOI: 10.1016/j.immuni.2024.02.019.
[26]
Marcus A, Mao AJ, Lensink-Vasan M, et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response[J]. Immunity, 2018, 49(4): 754-763. e754. DOI: 10.1016/j.immuni.2018.09.016.
[27]
Wang H, Hu S, Chen X, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade[J]. Proc Natl Acad Sci USA, 2017, 114(7): 1637-1642. DOI: 10.1073/pnas.1621363114.
[28]
Ohkuri T, Ghosh A, Kosaka A, et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment[J]. Cancer Immunol Res, 2014, 2(12): 1199-1208. DOI: 10.1158/2326-6066.Cir-14-0099.
[29]
Ahn J, Xia T, Konno H, et al. Inflammation-driven carcinogenesis is mediated through STING[J]. Nat Commun, 2014, 5: 5166. DOI: 10.1038/ncomms6166.
[30]
Decout A, Katz JD, Venkatraman S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021, 21(9): 548-569. DOI: 10.1038/s41577-021-00524-z.
[31]
Yang H, Lee WS, Kong SJ, et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade[J]. J Clin Invest, 2019, 129(10): 4350-4364. DOI: 10.1172/jci125413.
[32]
Rodriguez PC, Hernandez CP, Quiceno D, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma [J]. J Exp Med, 2005, 202(7): 931-939. DOI: 10.1084/jem.20050715.
[33]
Gulen MF, Koch U, Haag SM, et al. Signalling strength determines proapoptotic functions of STING[J]. Nat Commun, 2017, 8(1): 427. DOI: 10.1038/s41467-017-00573-w.
[34]
Wu J, Chen YJ, Dobbs N, et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death[J]. J Exp Med, 2019, 216(4): 867-883. DOI: 10.1084/jem.20182192.
[35]
Dai P, Wang W, Yang N, et al. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells[J]. Sci Immunol, 2017, 2(11): eaal1713. DOI: 10.1126/sciimmunol.aal1713.
[36]
Wang-Bishop L, Wehbe M, Shae D, et al. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma[J]. J Immunother Cancer, 2020, 8(1): e000282. DOI: 10.1136/jitc-2019-000282.
[37]
Flood BA, Higgs EF, Li S, et al. STING pathway agonism as a cancer therapeutic[J]. Immunol Rev, 2019, 290(1): 24-38. DOI: 10.1111/imr.12765.
[38]
Low JT, Chandramohan V, Bowie ML, et al. Epigenetic STING silencing is developmentally conserved in gliomas and can be rescued by methyltransferase inhibition[J]. Cancer Cell, 2022, 40(5): 439-440. DOI: 10.1016/j.ccell.2022.04.009.
[39]
Qiu L, Meng Y, Han J. STING cg16983159 methylation: a key factor for glioblastoma immunosuppression[J]. Signal Transduct Target Ther, 2022, 7(1): 228. DOI: 10.1038/s41392-022-01093-w.
[40]
Li L, Yin Q, Kuss P, et al. Hydrolysis of 2'3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs[J]. Nat Chem Biol, 2014, 10(12): 1043-1048. DOI: 10.1038/nchembio.1661.
[41]
Najem H, Lea ST, Tripathi S, et al. STING agonist 8803 reprograms the immune microenvironment and increases survival in preclinical models of glioblastoma[J]. J Clin Invest, 2024, 134(12): e175033. DOI: 10.1172/jci175033.
[42]
Zhong M, Long M, Han C, et al. STING is significantly increased in high-grade glioma with high risk of recurrence[J]. Oncoimmunology, 2024, 13(1): 2327682. DOI: 10.1080/2162402x.2024.2327682.
[43]
van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment[J]. Drug Resist Updat, 2015, 19: 1-12. DOI: 10.1016/j.drup.2015.02.002.
[44]
Galstyan A, Markman JL, Shatalova ES, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy[J]. Nat Commun, 2019, 10(1): 3850. DOI: 10.1038/s41467-019-11719-3.
[45]
Zhang P, Rashidi A, Zhao J, et al. STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma[J]. Nat Commun, 2023, 14(1): 1610. DOI: 10.1038/s41467-023-37328-9.
[46]
Lin Y, Wu J, Gu W, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J]. Adv Sci (Weinh), 2018, 5(4): 1700611. DOI: 10.1002/advs.201700611.
[47]
Gao P, Ascano M, Wu Y, et al. Cyclic [G(2'5')pA(3'5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase[J]. Cell, 2013, 153(5): 1094-1107. DOI: 10.1016/j.cell.2013.04.046.
[48]
Luo M, Liu Z, Zhang X, et al. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy[J]. J Control Release, 2019, 300: 154-160. DOI: 10.1016/j.jconrel.2019.02.036.
[49]
Cai X, Refaat A, Gan PY, et al. Angiopep-2-functionalized lipid cubosomes for blood-brain barrier crossing and glioblastoma treatment[J]. ACS Appl Mater Interfaces, 2024, 16(10): 12161-12174. DOI: 10.1021/acsami.3c14709.
[50]
Nance E, Pun SH, Saigal R, et al. Drug delivery to the central nervous system[J]. Nat Rev Mater, 2022, 7(4): 314-331. DOI: 10.1038/s41578-021-00394-w.
[51]
Nakamura T, Miyabe H, Hyodo M, et al. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma[J]. J Control Release, 2015, 216: 149-157. DOI: 10.1016/j.jconrel.2015.08.026.
[52]
Yang K, Han W, Jiang X, et al. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration[J]. Nat Nanotechnol, 2022, 17(12): 1322-1331. DOI: 10.1038/s41565-022-01225-x.
[53]
Corrales L, Gajewski TF. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer[J]. Clin Cancer Res, 2015, 21(21): 4774-4779. DOI: 10.1158/1078-0432.Ccr-15-1362.
[54]
Shae D, Becker KW, Christov P, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy[J]. Nat Nanotechnol, 2019, 14(3): 269-278. DOI: 10.1038/s41565-018-0342-5.
[55]
Corbet C, Feron O. Tumour acidosis: from the passenger to the driver's seat[J]. Nat Rev Cancer, 2017, 17(10): 577-593. DOI: 10.1038/nrc.2017.77.
[56]
Chi S, Zhang L, Cheng H, et al. Biomimetic nanocomposites camouflaged with hybrid cell membranes for accurate therapy of early-stage glioma[J]. Angew Chem Int Ed Engl, 2023, 62(29): e202304419. DOI: 10.1002/anie.202304419.
[57]
Li Y, Su Z, Zhao W, et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity[J]. Nat Cancer, 2020, 1(9): 882-893. DOI: 10.1038/s43018-020-0095-6.
[58]
Kwon J, Kim J, Park S, et al. Inflammation-responsive antioxidant nanoparticles based on a polymeric prodrug of vanillin[J]. Biomacromolecules, 2013, 14(5): 1618-1626. DOI: 10.1021/bm400256h.
[59]
Jia X, Wang Y, Qiao Y, et al. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy[J]. Chem Soc Rev, 2024, 53(23): 11590-11656. DOI: 10.1039/d4cs00404c.
[60]
Wang Y, Lin YX, Qiao ZY, et al. Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo[J]. Adv Mater, 2015, 27(16): 2627-2634. DOI: 10.1002/adma.201405926.
[61]
Yue X, Dai Z. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers[J]. Adv Colloid Interface Sci, 2014, 207: 32-42. DOI: 10.1016/j.cis.2013.11.014.
[62]
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics[J]. Theranostics, 2020, 10(10): 4557-4588. DOI: 10.7150/thno.38069.
[63]
Xue L, Thatte AS,Mai D, et al. Responsive biomaterials: optimizing control of cancer immunotherapy[J]. Nature Reviews Materials, 2024, 9(2): 100-118. DOI: 10.1038/s41578-023-00617-2.
[64]
Chellen T, Bausart M, Maus P, et al. In situ administration of STING-activating hyaluronic acid conjugate primes anti-glioblastoma immune response[J]. Mater Today Bio, 2024, 26: 101057. DOI: 10.1016/j.mtbio.2024.101057.
[65]
Bakhoum SF, Cantley LC. The multifaceted role of chromosomal instability in cancer and its microenvironment[J]. Cell, 2018, 174(6): 1347-1360. DOI: 10.1016/j.cell.2018.08.027.
[66]
Upadhaya S, Neftelino ST, Hodge JP, et al. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials[J]. Nat Rev Drug Discov, 2021, 20(3): 168-169. DOI: 10.1038/d41573-020-00204-y.
[67]
McIntosh JA, Liu Z, Andresen BM, et al. A kinase-cGAS cascade to synthesize a therapeutic STING activator[J]. Nature, 2022, 603(7901): 439-444. DOI: 10.1038/s41586-022-04422-9.
[68]
Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine[J]. Nat Rev Immunol, 2020, 20(5): 321-334. DOI: 10.1038/s41577-019-0269-6.
[69]
Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Discov, 2019, 18(3): 175-196. DOI: 10.1038/s41573-018-0006-z.
[70]
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy[J]. Cancer Discov, 2018, 8(9): 1069-1086. DOI: 10.1158/2159-8290.Cd-18-0367.
[71]
Fu J, Kanne DB, Leong M, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade[J]. Sci Transl Med, 2015, 7(283): 283ra52. DOI: 10.1126/scitranslmed.aaa4306.
[72]
Demaria O, De Gassart A, Coso S, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity[J]. Proc Natl Acad Sci USA, 2015, 112(50): 15408-15413. DOI: 10.1073/pnas.1512832112.
[73]
Chao Y, Xu L, Liang C, et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses[J]. Nat Biomed Eng, 2018, 2(8): 611-621. DOI: 10.1038/s41551-018-0262-6.
[74]
Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors[J]. Proc Natl Acad Sci USA, 2012, 109(17): 6662-6667. DOI: 10.1073/pnas.1121623109.
[75]
Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance[J]. Trends Immunol, 2016, 37(3): 193-207. DOI: 10.1016/j.it.2016.01.002.
[76]
Zhai L, Bell A, Ladomersky E, et al. Immunosuppressive IDO in cancer: mechanisms of action, animal models, and targeting strategies[J]. Front Immunol, 2020, 11: 1185. DOI: 10.3389/fimmu.2020.01185.
[77]
Wilson DR, Sen R, Sunshine JC, et al. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy[J]. Nanomedicine, 2018, 14(2): 237-246. DOI: 10.1016/j.nano.2017.10.013.
[78]
Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12(7): 648-654. DOI: 10.1038/nnano.2017.52.
[79]
Liu Y, Crowe WN, Wang L, et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases[J]. Nat Commun, 2019, 10(1): 5108. DOI: 10.1038/s41467-019-13094-5.
[80]
Hanson MC, Crespo MP, Abraham W, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants[J]. J Clin Invest, 2015, 125(6): 2532-2546. DOI: 10.1172/jci79915.
[81]
Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014, 41(5): 843-852. DOI: 10.1016/j.immuni.2014.10.019.
[82]
Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618. DOI: 10.1038/ncomms15618.
[83]
Yan J, Wang G, Xie L, et al. Engineering radiosensitizer-based metal-phenolic networks potentiate STING pathway activation for advanced radiotherapy[J]. Adv Mater, 2022, 34(10): e2105783. DOI: 10.1002/adma.202105783.
[84]
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2(8): 578-588. DOI: 10.1038/s41551-018-0236-8.
[85]
Hameedat F, Mendes BB, Conniot J, et al. Engineering nanomaterials for glioblastoma nanovaccination[J]. Nature Reviews Materials, 2024, 9(9): 628-642. DOI: 10.1038/s41578-024-00684-z.
[86]
Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges[J]. Nat Rev Clin Oncol, 2020, 17(4): 251-266. DOI: 10.1038/s41571-019-0308-z.
[1] 陈隆, 段晓鑫, 王思卓, 董胜利. 胃癌免疫治疗的现状[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 177-182.
[2] 张忠涛, 高加勒, 姚宏伟. 新辅助放化疗联合免疫治疗局部进展期直肠癌的现状与前景[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 119-122.
[3] 姚宏伟, 孙丽婷, 吴偲, 舒文龙, 高加勒, 杨正阳, 吴国聪, 张忠涛. 新辅助放化疗联合免疫治疗局部进展期直肠癌的探索与实践[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 123-127.
[4] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[5] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[6] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[7] 李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.
[8] 邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.
[9] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[10] 王少军, 黄丛秀, 刘彩霞, 苏乌云. 阿得贝利单抗治疗肺大细胞神经内分泌癌伴乳腺转移1例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 494-496.
[11] 喻星豪, 黄娜, 刘罡. 肺癌的靶向与免疫联合治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 330-333.
[12] 王重阳, 滑文文, 魏丽, 邱应和, 杨发才, 李函娟. 免疫治疗联合局部区域疗法治疗中晚期肝癌的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 302-307.
[13] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[14] 沈汶娟, 潘怡, 董林, 邹霜梅. 中国微卫星不稳定大肠癌患者临床病理特征分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 251-258.
[15] 任千河, 杨苏苏, 于跃. 肺癌治疗中成纤维细胞作为靶点的研究进展与前景[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 105-111.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?