[1] |
Price M, Ballard C, Benedetti J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2017-2021[J]. Neuro Oncol, 2024, 26(Supplement_6): vi1-vi85. DOI: 10.1093/neuonc/noae145.
|
[2] |
van den Bent MJ, Geurts M, French PJ, et al. Primary brain tumours in adults[J]. Lancet, 2023, 402(10412): 1564-1579. DOI: 10.1016/s0140-6736(23)01054-1.
|
[3] |
Ross JL, Velazquez Vega J, Plant A, et al. Tumour immune landscape of paediatric high-grade gliomas[J]. Brain, 2021, 144(9): 2594-2609. DOI: 10.1093/brain/awab155.
|
[4] |
Yeo AT, Rawal S, Delcuze B, et al. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression[J]. Nat Immunol, 2022, 23(6): 971-984. DOI: 10.1038/s41590-022-01215-0.
|
[5] |
Kirschenbaum D, Xie K, Ingelfinger F, et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma[J]. Cell, 2024, 187(1): 149-165. e123. DOI: 10.1016/j.cell.2023.11.032.
|
[6] |
Quail DF, Joyce JA. The microenvironmental landscape of brain tumors[J]. Cancer Cell, 2017, 31(3): 326-341. DOI: 10.1016/j.ccell.2017.02.009.
|
[7] |
Lakshmanachetty S, Mitra SS. Mapping the tumor-infiltrating immune cells during glioblastoma progression[J]. Nat Immunol, 2022, 23(6): 826-828. DOI: 10.1038/s41590-022-01223-0.
|
[8] |
Liu Y, Zhou F, Ali H, et al. Immunotherapy for glioblastoma: current state, challenges, and future perspectives[J]. Cell Mol Immunol, 2024, 21(12): 1354-1375. DOI: 10.1038/s41423-024-01226-x.
|
[9] |
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer[J]. Nat Immunol, 2024, 25(7): 1144-1157. DOI: 10.1038/s41590-024-01872-3.
|
[10] |
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521. DOI: 10.1038/s41580-020-0244-x.
|
[11] |
Lin H, Liu C, Hu A, et al. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives[J]. J Hematol Oncol, 2024, 17(1): 31. DOI: 10.1186/s13045-024-01544-7.
|
[12] |
Gong Z, Zhou D, Wu D, et al. Challenges and material innovations in drug delivery to central nervous system tumors[J]. Biomaterials, 2025, 319: 123180. DOI: 10.1016/j.biomaterials.2025.123180.
|
[13] |
Ceccarelli M, Barthel FP, Malta TM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma[J]. Cell, 2016, 164(3): 550-563. DOI: 10.1016/j.cell.2015.12.028.
|
[14] |
Barthel L, Hadamitzky M, Dammann P, et al. Glioma: molecular signature and crossroads with tumor microenvironment[J]. Cancer Metastasis Rev, 2022, 41(1): 53-75. DOI: 10.1007/s10555-021-09997-9.
|
[15] |
Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications[J]. Cancer Discov, 2021, 11(3): 575-590. DOI: 10.1158/2159-8290.Cd-20-1474.
|
[16] |
|
[17] |
Rustenhoven J, Kipnis J. Bypassing the blood-brain barrier[J]. Science, 2019, 366(6472): 1448-1449. DOI: 10.1126/science.aay0479.
|
[18] |
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41. DOI: 10.1038/s41568-019-0205-x.
|
[19] |
Broekman ML, Maas SLN, Abels ER, et al. Multidimensional communication in the microenvirons of glioblastoma[J]. Nat Rev Neurol, 2018, 14(8): 482-495. DOI: 10.1038/s41582-018-0025-8.
|
[20] |
Dunn GP, Cloughesy TF, Maus MV, et al. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy[J]. Neuro Oncol, 2020, 22(10): 1425-1438. DOI: 10.1093/neuonc/noaa154.
|
[21] |
Gan Y, Li X, Han S, et al. The cGAS/STING pathway: a novel target for cancer therapy[J]. Front Immunol, 2021, 12: 795401. DOI: 10.3389/fimmu.2021.795401.
|
[22] |
Low JT, Brown MC, Reitman ZJ, et al. Understanding and therapeutically exploiting cGAS/STING signaling in glioblastoma[J]. J Clin Invest, 2024, 134(2): e163452. DOI: 10.1172/jci163452.
|
[23] |
Chen C, Xu P. Cellular functions of cGAS/STING signaling[J]. Trends Cell Biol, 2023, 33(8): 630-648. DOI: 10.1016/j.tcb.2022.11.001.
|
[24] |
Liang JL, Jin XK, Deng XC, et al. Targeting activation of cGAS-STING signaling pathway by engineered biomaterials for enhancing cancer immunotherapy[J]. Materials Today, 2024, 78: 46. DOI: 10.1016/j.mattod.2024.07.004.
|
[25] |
Dvorkin S, Cambier S, Volkman HE, et al. New frontiers in the cGAS/STING intracellular DNA-sensing pathway[J]. Immunity, 2024, 57(4): 718-730. DOI: 10.1016/j.immuni.2024.02.019.
|
[26] |
Marcus A, Mao AJ, Lensink-Vasan M, et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response[J]. Immunity, 2018, 49(4): 754-763. e754. DOI: 10.1016/j.immuni.2018.09.016.
|
[27] |
Wang H, Hu S, Chen X, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade[J]. Proc Natl Acad Sci USA, 2017, 114(7): 1637-1642. DOI: 10.1073/pnas.1621363114.
|
[28] |
Ohkuri T, Ghosh A, Kosaka A, et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment[J]. Cancer Immunol Res, 2014, 2(12): 1199-1208. DOI: 10.1158/2326-6066.Cir-14-0099.
|
[29] |
Ahn J, Xia T, Konno H, et al. Inflammation-driven carcinogenesis is mediated through STING[J]. Nat Commun, 2014, 5: 5166. DOI: 10.1038/ncomms6166.
|
[30] |
Decout A, Katz JD, Venkatraman S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021, 21(9): 548-569. DOI: 10.1038/s41577-021-00524-z.
|
[31] |
Yang H, Lee WS, Kong SJ, et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade[J]. J Clin Invest, 2019, 129(10): 4350-4364. DOI: 10.1172/jci125413.
|
[32] |
Rodriguez PC, Hernandez CP, Quiceno D, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma [J]. J Exp Med, 2005, 202(7): 931-939. DOI: 10.1084/jem.20050715.
|
[33] |
Gulen MF, Koch U, Haag SM, et al. Signalling strength determines proapoptotic functions of STING[J]. Nat Commun, 2017, 8(1): 427. DOI: 10.1038/s41467-017-00573-w.
|
[34] |
Wu J, Chen YJ, Dobbs N, et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death[J]. J Exp Med, 2019, 216(4): 867-883. DOI: 10.1084/jem.20182192.
|
[35] |
Dai P, Wang W, Yang N, et al. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells[J]. Sci Immunol, 2017, 2(11): eaal1713. DOI: 10.1126/sciimmunol.aal1713.
|
[36] |
Wang-Bishop L, Wehbe M, Shae D, et al. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma[J]. J Immunother Cancer, 2020, 8(1): e000282. DOI: 10.1136/jitc-2019-000282.
|
[37] |
Flood BA, Higgs EF, Li S, et al. STING pathway agonism as a cancer therapeutic[J]. Immunol Rev, 2019, 290(1): 24-38. DOI: 10.1111/imr.12765.
|
[38] |
Low JT, Chandramohan V, Bowie ML, et al. Epigenetic STING silencing is developmentally conserved in gliomas and can be rescued by methyltransferase inhibition[J]. Cancer Cell, 2022, 40(5): 439-440. DOI: 10.1016/j.ccell.2022.04.009.
|
[39] |
Qiu L, Meng Y, Han J. STING cg16983159 methylation: a key factor for glioblastoma immunosuppression[J]. Signal Transduct Target Ther, 2022, 7(1): 228. DOI: 10.1038/s41392-022-01093-w.
|
[40] |
Li L, Yin Q, Kuss P, et al. Hydrolysis of 2'3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs[J]. Nat Chem Biol, 2014, 10(12): 1043-1048. DOI: 10.1038/nchembio.1661.
|
[41] |
Najem H, Lea ST, Tripathi S, et al. STING agonist 8803 reprograms the immune microenvironment and increases survival in preclinical models of glioblastoma[J]. J Clin Invest, 2024, 134(12): e175033. DOI: 10.1172/jci175033.
|
[42] |
Zhong M, Long M, Han C, et al. STING is significantly increased in high-grade glioma with high risk of recurrence[J]. Oncoimmunology, 2024, 13(1): 2327682. DOI: 10.1080/2162402x.2024.2327682.
|
[43] |
van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment[J]. Drug Resist Updat, 2015, 19: 1-12. DOI: 10.1016/j.drup.2015.02.002.
|
[44] |
Galstyan A, Markman JL, Shatalova ES, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy[J]. Nat Commun, 2019, 10(1): 3850. DOI: 10.1038/s41467-019-11719-3.
|
[45] |
Zhang P, Rashidi A, Zhao J, et al. STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma[J]. Nat Commun, 2023, 14(1): 1610. DOI: 10.1038/s41467-023-37328-9.
|
[46] |
Lin Y, Wu J, Gu W, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J]. Adv Sci (Weinh), 2018, 5(4): 1700611. DOI: 10.1002/advs.201700611.
|
[47] |
Gao P, Ascano M, Wu Y, et al. Cyclic [G(2'5')pA(3'5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase[J]. Cell, 2013, 153(5): 1094-1107. DOI: 10.1016/j.cell.2013.04.046.
|
[48] |
Luo M, Liu Z, Zhang X, et al. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy[J]. J Control Release, 2019, 300: 154-160. DOI: 10.1016/j.jconrel.2019.02.036.
|
[49] |
Cai X, Refaat A, Gan PY, et al. Angiopep-2-functionalized lipid cubosomes for blood-brain barrier crossing and glioblastoma treatment[J]. ACS Appl Mater Interfaces, 2024, 16(10): 12161-12174. DOI: 10.1021/acsami.3c14709.
|
[50] |
Nance E, Pun SH, Saigal R, et al. Drug delivery to the central nervous system[J]. Nat Rev Mater, 2022, 7(4): 314-331. DOI: 10.1038/s41578-021-00394-w.
|
[51] |
Nakamura T, Miyabe H, Hyodo M, et al. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma[J]. J Control Release, 2015, 216: 149-157. DOI: 10.1016/j.jconrel.2015.08.026.
|
[52] |
Yang K, Han W, Jiang X, et al. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration[J]. Nat Nanotechnol, 2022, 17(12): 1322-1331. DOI: 10.1038/s41565-022-01225-x.
|
[53] |
Corrales L, Gajewski TF. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer[J]. Clin Cancer Res, 2015, 21(21): 4774-4779. DOI: 10.1158/1078-0432.Ccr-15-1362.
|
[54] |
Shae D, Becker KW, Christov P, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy[J]. Nat Nanotechnol, 2019, 14(3): 269-278. DOI: 10.1038/s41565-018-0342-5.
|
[55] |
Corbet C, Feron O. Tumour acidosis: from the passenger to the driver's seat[J]. Nat Rev Cancer, 2017, 17(10): 577-593. DOI: 10.1038/nrc.2017.77.
|
[56] |
Chi S, Zhang L, Cheng H, et al. Biomimetic nanocomposites camouflaged with hybrid cell membranes for accurate therapy of early-stage glioma[J]. Angew Chem Int Ed Engl, 2023, 62(29): e202304419. DOI: 10.1002/anie.202304419.
|
[57] |
Li Y, Su Z, Zhao W, et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity[J]. Nat Cancer, 2020, 1(9): 882-893. DOI: 10.1038/s43018-020-0095-6.
|
[58] |
Kwon J, Kim J, Park S, et al. Inflammation-responsive antioxidant nanoparticles based on a polymeric prodrug of vanillin[J]. Biomacromolecules, 2013, 14(5): 1618-1626. DOI: 10.1021/bm400256h.
|
[59] |
Jia X, Wang Y, Qiao Y, et al. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy[J]. Chem Soc Rev, 2024, 53(23): 11590-11656. DOI: 10.1039/d4cs00404c.
|
[60] |
Wang Y, Lin YX, Qiao ZY, et al. Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo[J]. Adv Mater, 2015, 27(16): 2627-2634. DOI: 10.1002/adma.201405926.
|
[61] |
Yue X, Dai Z. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers[J]. Adv Colloid Interface Sci, 2014, 207: 32-42. DOI: 10.1016/j.cis.2013.11.014.
|
[62] |
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics[J]. Theranostics, 2020, 10(10): 4557-4588. DOI: 10.7150/thno.38069.
|
[63] |
Xue L, Thatte AS, Mai D, et al. Responsive biomaterials: optimizing control of cancer immunotherapy[J]. Nature Reviews Materials, 2024, 9(2): 100-118. DOI: 10.1038/s41578-023-00617-2.
|
[64] |
Chellen T, Bausart M, Maus P, et al. In situ administration of STING-activating hyaluronic acid conjugate primes anti-glioblastoma immune response[J]. Mater Today Bio, 2024, 26: 101057. DOI: 10.1016/j.mtbio.2024.101057.
|
[65] |
Bakhoum SF, Cantley LC. The multifaceted role of chromosomal instability in cancer and its microenvironment[J]. Cell, 2018, 174(6): 1347-1360. DOI: 10.1016/j.cell.2018.08.027.
|
[66] |
Upadhaya S, Neftelino ST, Hodge JP, et al. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials[J]. Nat Rev Drug Discov, 2021, 20(3): 168-169. DOI: 10.1038/d41573-020-00204-y.
|
[67] |
McIntosh JA, Liu Z, Andresen BM, et al. A kinase-cGAS cascade to synthesize a therapeutic STING activator[J]. Nature, 2022, 603(7901): 439-444. DOI: 10.1038/s41586-022-04422-9.
|
[68] |
Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine[J]. Nat Rev Immunol, 2020, 20(5): 321-334. DOI: 10.1038/s41577-019-0269-6.
|
[69] |
Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Discov, 2019, 18(3): 175-196. DOI: 10.1038/s41573-018-0006-z.
|
[70] |
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy[J]. Cancer Discov, 2018, 8(9): 1069-1086. DOI: 10.1158/2159-8290.Cd-18-0367.
|
[71] |
Fu J, Kanne DB, Leong M, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade[J]. Sci Transl Med, 2015, 7(283): 283ra52. DOI: 10.1126/scitranslmed.aaa4306.
|
[72] |
Demaria O, De Gassart A, Coso S, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity[J]. Proc Natl Acad Sci USA, 2015, 112(50): 15408-15413. DOI: 10.1073/pnas.1512832112.
|
[73] |
Chao Y, Xu L, Liang C, et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses[J]. Nat Biomed Eng, 2018, 2(8): 611-621. DOI: 10.1038/s41551-018-0262-6.
|
[74] |
Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors[J]. Proc Natl Acad Sci USA, 2012, 109(17): 6662-6667. DOI: 10.1073/pnas.1121623109.
|
[75] |
Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance[J]. Trends Immunol, 2016, 37(3): 193-207. DOI: 10.1016/j.it.2016.01.002.
|
[76] |
Zhai L, Bell A, Ladomersky E, et al. Immunosuppressive IDO in cancer: mechanisms of action, animal models, and targeting strategies[J]. Front Immunol, 2020, 11: 1185. DOI: 10.3389/fimmu.2020.01185.
|
[77] |
Wilson DR, Sen R, Sunshine JC, et al. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy[J]. Nanomedicine, 2018, 14(2): 237-246. DOI: 10.1016/j.nano.2017.10.013.
|
[78] |
Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12(7): 648-654. DOI: 10.1038/nnano.2017.52.
|
[79] |
Liu Y, Crowe WN, Wang L, et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases[J]. Nat Commun, 2019, 10(1): 5108. DOI: 10.1038/s41467-019-13094-5.
|
[80] |
Hanson MC, Crespo MP, Abraham W, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants[J]. J Clin Invest, 2015, 125(6): 2532-2546. DOI: 10.1172/jci79915.
|
[81] |
Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014, 41(5): 843-852. DOI: 10.1016/j.immuni.2014.10.019.
|
[82] |
Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618. DOI: 10.1038/ncomms15618.
|
[83] |
Yan J, Wang G, Xie L, et al. Engineering radiosensitizer-based metal-phenolic networks potentiate STING pathway activation for advanced radiotherapy[J]. Adv Mater, 2022, 34(10): e2105783. DOI: 10.1002/adma.202105783.
|
[84] |
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2(8): 578-588. DOI: 10.1038/s41551-018-0236-8.
|
[85] |
Hameedat F, Mendes BB, Conniot J, et al. Engineering nanomaterials for glioblastoma nanovaccination[J]. Nature Reviews Materials, 2024, 9(9): 628-642. DOI: 10.1038/s41578-024-00684-z.
|
[86] |
Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges[J]. Nat Rev Clin Oncol, 2020, 17(4): 251-266. DOI: 10.1038/s41571-019-0308-z.
|