[1] |
Zhu J, Cui Y, Zhang J, et al. Temporal trends in the prevalence of Parkinson's disease from 1980 to 2023: a systematic review and meta-analysis[J]. Lancet Healthy Longev, 2024, 5(7): e464-e479. DOI: 10.1016/s2666-7568(24)00094-1.
|
[2] |
Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, et al. The epidemiology of Parkinson's disease[J]. Lancet, 2024, 403(10423): 283-292. DOI: 10.1016/s0140-6736(23)01419-8.
|
[3] |
Priori A, Foffani G, Rossi L, et al. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations[J]. Exp Neurol, 2013, 245: 77-86. DOI: 10.1016/j.expneurol.2012.09.013.
|
[4] |
Schor JS, Nelson AB. Multiple stimulation parameters influence efficacy of deep brain stimulation in Parkinsonian mice[J]. J Clin Invest, 2019, 129(9): 3833-3838. DOI: 10.1172/jci122390.
|
[5] |
王力. 自适应深部脑刺激系统研究[D]. 重庆: 重庆邮电大学, 2019.
|
[6] |
Rosa M, Arlotti M, Ardolino G, et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient[J]. Mov Disord, 2015, 30(7): 1003-1005. DOI: 10.1002/mds.26241.
|
[7] |
Alva L, Bernasconi E, Torrecillos F, et al. Clinical neurophysiological interrogation of motor slowing: a critical step towards tuning adaptive deep brain stimulation[J]. Clin Neurophysiol, 2023, 152: 43-56. DOI: 10.1016/j.clinph.2023.04.013.
|
[8] |
常思远. 闭环深部脑刺激的建模与调控策略研究[D]. 天津: 天津大学, 2022.
|
[9] |
王守岩. 深部脑刺激:神经感知与智能调控[C]//中国力学学会动力学与控制专业委员会神经动力学专业组.第四届全国神经动力学学术会议摘要集,西安, 2018. 上海: 复旦大学类脑智能科学与技术研究院, 2018: 24-25.
|
[10] |
Swann NC, de Hemptinne C, Thompson MC, et al. Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing [J]. J Neural Eng, 2018, 15(4): 046006. DOI: 10.1088/1741-2552/aabc9b.
|
[11] |
Neumann WJ, Gilron R, Little S, et al. Adaptive deep brain stimulation: From experimental evidence toward practical implementation[J]. Mov Disord, 2023, 38(6): 937-948. DOI: 10.1002/mds.29415.
|
[12] |
Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease[J]. Ann Neurol, 2013, 74(3): 449-457. DOI: 10.1002/ana.23951.
|
[13] |
Evers J, Orłowski J, Jahns H, et al. On-off and proportional closed-loop adaptive deep brain stimulation reduces motor symptoms in freely moving hemiparkinsonian rats[J]. Neuromodulation, 2024, 27(3): 476-488. DOI: 10.1016/j.neurom.2023.03.018.
|
[14] |
Little S, Tripoliti E, Beudel M, et al. Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting [J]. J Neurol Neurosurg Psychiatry, 2016, 87(12): 1388-1389. DOI: 10.1136/jnnp-2016-313518.
|
[15] |
Piña-Fuentes D, van Dijk JMC, van Zijl JC, et al. Acute effects of adaptive deep brain stimulation in Parkinson's disease[J]. Brain Stimul, 2020, 13(6): 1507-1516. DOI: 10.1016/j.brs.2020.07.016.
|
[16] |
Bichsel O, Stieglitz L, Oertel M, et al. The modulatory effect of self-paced and cued motor execution on subthalamic beta-bursts in Parkinson's disease: evidence from deep brain recordings in humans [J]. Neurobiol Dis, 2022, 172: 105818. DOI: 10.1016/j.nbd.2022.105818.
|
[17] |
Litvak V, Florin E, Tamás G, et al. EEG and MEG primers for tracking DBS network effects[J]. Neuroimage, 2021, 224: 117447. DOI: 10.1016/j.neuroimage.2020.117447.
|
[18] |
Melon C, Chassain C, Bielicki G, et al. Progressive brain metabolic changes under deep brain stimulation of subthalamic nucleus in Parkinsonian rats[J]. J Neurochem, 2015, 132(6): 703-712. DOI: 10.1111/jnc.13015.
|
[19] |
Naour AL, Beziat E, Kam JH, et al. Do astrocytes respond to light, sound, or electrical stimulation?[J]. Neural Regen Res, 2023, 18(11): 2343-2347. DOI: 10.4103/1673-5374.371343.
|
[20] |
Hoang KB, Turner DA. The emerging role of biomarkers in adaptive modulation of clinical brain stimulation[J]. Neurosurgery, 2019, 85(3): E430-E439. DOI: 10.1093/neuros/nyz096.
|
[21] |
Bočková M, Rektor I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges[J]. J Neural Transm (Vienna), 2021, 128(8): 1169-1175. DOI: 10.1007/s00702-021-02381-5.
|
[22] |
van Wijk BCM, de Bie RMA, Beudel M. A systematic review of local field potential physiomarkers in Parkinson's disease: from clinical correlations to adaptive deep brain stimulation algorithms[J]. J Neurol, 2023, 270(2): 1162-1177. DOI: 10.1007/s00415-022-11388-1.
|
[23] |
Trager MH, Koop MM, Velisar A, et al. Subthalamic beta oscillations are attenuated after withdrawal of chronic high frequency neurostimulation in Parkinson's disease[J]. Neurobiol Dis, 2016, 96: 22-30. DOI: 10.1016/j.nbd.2016.08.003.
|
[24] |
Stanslaski S, Summers RLS, Tonder L, et al. Sensing data and methodology from the adaptive DBS algorithm for personalized therapy in Parkinson's disease (ADAPT-PD) clinical trial[J]. NPJ Parkinsons Dis, 2024, 10(1): 174. DOI: 10.1038/s41531-024-00772-5.
|
[25] |
Jiang X, Yang J, Wang Z, et al. Functional interaction of abnormal beta and gamma oscillations on bradykinesia in Parkinsonian rats[J]. Brain Res Bull, 2024, 209: 110911. DOI: 10.1016/j.brainresbull.2024.110911.
|
[26] |
Köhler RM, Binns TS, Merk T, et al. Dopamine and deep brain stimulation accelerate the neural dynamics of volitional action in Parkinson's disease[J]. Brain, 2024, 147(10): 3358-3369. DOI: 10.1093/brain/awae219.
|
[27] |
Salehi N, Nahrgang S, Petershagen W, et al. Theta frequency deep brain stimulation in the subthalamic nucleus improves working memory in Parkinson's disease[J]. Brain, 2024, 147(4): 1190-1196. DOI: 10.1093/brain/awad433.
|
[28] |
Sweeney-Reed CM, Zaehle T, Voges J, et al. Pre-stimulus thalamic theta power predicts human memory formation[J]. Neuroimage, 2016, 138: 100-108. DOI: 10.1016/j.neuroimage.2016.05.042.
|
[29] |
Burgess JG, Warwick K, Ruiz V, et al. Identifying tremor-related characteristics of basal ganglia nuclei during movement in the Parkinsonian patient[J]. Parkinsonism Relat Disord, 2010, 16(10): 671-675. DOI: 10.1016/j.parkreldis.2010.08.025.
|
[30] |
Air EL, Ryapolova-Webb E, de Hemptinne C, et al. Acute effects of thalamic deep brain stimulation and thalamotomy on sensorimotor cortex local field potentials in essential tremor[J]. Clin Neurophysiol, 2012, 123(11): 2232-2238. DOI: 10.1016/j.clinph.2012.04.020.
|
[31] |
Hoang KB, Cassar IR, Grill WM, et al. Biomarkers and stimulation algorithms for adaptive brain stimulation[J]. Front Neurosci, 2017, 11: 564. DOI: 10.3389/fnins.2017.00564.
|
[32] |
de Hemptinne C, Ryapolova-Webb ES, Air EL, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease[J]. Proc Natl Acad Sci USA, 2013, 110(12): 4780-4785. DOI: 10.1073/pnas.1214546110.
|
[33] |
Piña-Fuentes D, Beudel M, Little S, et al. Adaptive deep brain stimulation as advanced Parkinson's disease treatment (ADAPT study): protocol for a pseudo-randomised clinical study[J]. BMJ Open, 2019, 9(6): e029652. DOI: 10.1136/bmjopen-2019-029652.
|
[34] |
Oehrn CR, Cernera S, Hammer LH, et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson's disease: a blinded randomized feasibility trial[J]. Nat Med, 2024, 30(11): 3345-3356. DOI: 10.1038/s41591-024-03196-z.
|
[35] |
Petraglia FW, 3rd, Farber SH, Han JL, et al. Comparison of bilateral vs. Staged unilateral Deep Brain Stimulation (DBS) in Parkinson's disease in patients under 70 years of age[J]. Neuromodulation, 2016, 19(1): 31-37. DOI: 10.1111/ner.12351.
|
[36] |
|
[37] |
Oslin SJ, Shi HH, Conner AK. Preventing sudden cessation of implantable pulse generators in deep brain stimulation: a systematic review and protocol proposal[J]. Stereotact Funct Neurosurg, 2024, 102(2): 127-134. DOI: 10.1159/000535880.
|
[38] |
Thenaisie Y, Palmisano C, Canessa A, et al. Towards adaptive deep brain stimulation: clinical and technical notes on a novel commercial device for chronic brain sensing[J]. J Neural Eng, 2021, 18(4): 042002. DOI: 10.1088/1741-2552/ac1d5b.
|
[39] |
Lee HM, Park H, Ghovanloo M. A power-efficient wireless system with adaptive supply control for deep brain stimulation[J]. IEEE J Solid-State Circuits, 2013, 48(9): 2203-2216. DOI: 10.1109/jssc.2013.2266862.
|
[40] |
Ria N, Eladly A, Masvidal-Codina E, et al. Flexible graphene-based neurotechnology for high-precision deep brain mapping and neuromodulation in Parkinsonian rats[J]. Nat Commun, 2025, 16(1): 2891. DOI: 10.1038/s41467-025-58156-z.
|
[41] |
Chandrabhatla AS, Pomeraniec IJ, Horgan TM, et al. Landscape and future directions of machine learning applications in closed-loop brain stimulation[J]. NPJ Digit Med, 2023, 6(1): 79. DOI: 10.1038/s41746-023-00779-x.
|