切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-123X.2025.04.001

述评

植入式自适应深部脑刺激在帕金森病治疗中的研究进展
袁瑛1, 徐超2, 崔砚1, 徐江1, 徐如祥1,()   
  1. 1610072 成都,电子科技大学医学院·四川省人民医院神经外科(植入式脑机接口四川省工程研究中心)
    2100084 北京,清华大学电子工程系
  • 收稿日期:2025-07-16 出版日期:2025-08-15
  • 通信作者: 徐如祥

Research advances in adaptive deep brain stimulation for Parkinson disease treatment

Ying Yuan1, Chao Xu2, Yan Cui1, Jiang Xu1, Ruxiang Xu1,()   

  1. 1Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China (Sichuan Provincial Engineering Research Center for Implantable Brain-Computer Interfaces), Chengdu 610072, China
    2Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • Received:2025-07-16 Published:2025-08-15
  • Corresponding author: Ruxiang Xu
  • Supported by:
    National Key Research and Development Program of China(2023YFF1204200); Fundamental Research Funds for the Central Universities(ZYGX2021YGLH219)
引用本文:

袁瑛, 徐超, 崔砚, 徐江, 徐如祥. 植入式自适应深部脑刺激在帕金森病治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 193-198.

Ying Yuan, Chao Xu, Yan Cui, Jiang Xu, Ruxiang Xu. Research advances in adaptive deep brain stimulation for Parkinson disease treatment[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(04): 193-198.

帕金森病(PD)是一种以黑质多巴胺能神经元变性为特征的神经系统退行性疾病,其典型临床表现包括运动迟缓、震颤等,严重影响患者的生活质量。深部脑刺激(DBS)是目前临床治疗PD的关键技术,可通过高频电刺激特定脑区改善运动功能。但传统DBS的固定刺激参数无法动态响应症状波动,可能导致过度刺激或刺激不足,进而影响治疗效果。自适应深部脑刺激(aDBS)可以通过实时监测神经信号,如局部场电位(LFPs),解码神经特征,构建"监测-解码-调控"的闭环系统,动态调整刺激参数,实现更精准、个性化的治疗。aDBS不仅能显著改善运动症状,还可减少言语障碍、吞咽困难等不良反应,是治疗PD的理想手段。目前,aDBS仍面临脉冲发生器芯片化、柔性电极精准植入、信息采集/解码与反馈、微型高能电池与无线充电安全性、减少手术创伤大及并发症等技术挑战。未来,突破植入式脑机接口(BCI)脉冲发生器芯片化、微电极阵列、大数据并行计算、高带宽通信等技术瓶颈,是植入式BCI的颠覆性创新,将有望成为PD、阿尔茨海默病、抑郁症等重要脑疾病治疗的突破。本文围绕aDBS的原理、临床优势、生物标志物研究、临床试验设计及设备创新进展进行述评,并分析其技术瓶颈与发展方向,以期为aDBS的后续研究提供参考。

Parkinson disease (PD) is a progressive neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Clinically, PD presents with motor symptoms such as bradykinesia, tremor, and rigidity, which significantly compromise patients' daily function and quality of life. Deep brain stimulation (DBS) has become a cornerstone in the management of advanced PD, delivering high-frequency electrical stimulation to specific brain targets to alleviate motor deficits. However, conventional DBS operates with fixed parameters, lacking the ability to adapt in real-time to symptom fluctuations. This rigidity can lead to suboptimal outcomes including overstimulation or inadequate symptom control.Adaptive DBS (aDBS) represents an advanced therapeutic approach that continuously monitors neural activity, such as local field potentials (LFPs), and dynamically adjusts stimulation parameters through a closed-loop "sense-decode-stimulate" system. This facilitates personalized therapy that responds in real-time to the patient's clinical state. aDBS has been shown to not only enhance motor symptom control but also reduce stimulation-induced side effects such as dysarthria and dysphagia. Despite its promise, several clinical and technical challenges remain. These include the miniaturization of pulse generators, precision placement of flexible electrodes, reliable signal decoding and feedback, safety of compact high-energy batteries and wireless charging, and minimizing surgical invasiveness and related complications. Future developments in implantable brain-computer interface (BCI) technologies, such as integrated circuit-based implantable pulse generators, microelectrode array, high-performance computing, and secure high-bandwidth communication, hold disruptive potential that may benefit not only PD but also other neurological and psychiatric conditions including Alzheimer disease and depression. This article reviews the fundamental principles, clinical benefits, biomarker validation, trial design considerations, and technological advancements in aDBS systems, and discusses current limitations and future directions to guide further clinical translation.

表1 LFP特征频段与PD临床症状的关联性
Tab.1 Association between characteristic LFP frequency bands and clinical symptoms of PD
[1]
Zhu J, Cui Y, Zhang J, et al. Temporal trends in the prevalence of Parkinson's disease from 1980 to 2023: a systematic review and meta-analysis[J]. Lancet Healthy Longev, 2024, 5(7): e464-e479. DOI: 10.1016/s2666-7568(24)00094-1.
[2]
Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, et al. The epidemiology of Parkinson's disease[J]. Lancet, 2024, 403(10423): 283-292. DOI: 10.1016/s0140-6736(23)01419-8.
[3]
Priori A, Foffani G, Rossi L, et al. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations[J]. Exp Neurol, 2013, 245: 77-86. DOI: 10.1016/j.expneurol.2012.09.013.
[4]
Schor JS, Nelson AB. Multiple stimulation parameters influence efficacy of deep brain stimulation in Parkinsonian mice[J]. J Clin Invest, 2019, 129(9): 3833-3838. DOI: 10.1172/jci122390.
[5]
王力. 自适应深部脑刺激系统研究[D]. 重庆: 重庆邮电大学, 2019.
[6]
Rosa M, Arlotti M, Ardolino G, et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient[J]. Mov Disord, 2015, 30(7): 1003-1005. DOI: 10.1002/mds.26241.
[7]
Alva L, Bernasconi E, Torrecillos F, et al. Clinical neurophysiological interrogation of motor slowing: a critical step towards tuning adaptive deep brain stimulation[J]. Clin Neurophysiol, 2023, 152: 43-56. DOI: 10.1016/j.clinph.2023.04.013.
[8]
常思远. 闭环深部脑刺激的建模与调控策略研究[D]. 天津: 天津大学, 2022.
[9]
王守岩. 深部脑刺激:神经感知与智能调控[C]//中国力学学会动力学与控制专业委员会神经动力学专业组.第四届全国神经动力学学术会议摘要集,西安, 2018. 上海: 复旦大学类脑智能科学与技术研究院, 2018: 24-25.
[10]
Swann NC, de Hemptinne C, Thompson MC, et al. Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing [J]. J Neural Eng, 2018, 15(4): 046006. DOI: 10.1088/1741-2552/aabc9b.
[11]
Neumann WJ, Gilron R, Little S, et al. Adaptive deep brain stimulation: From experimental evidence toward practical implementation[J]. Mov Disord, 2023, 38(6): 937-948. DOI: 10.1002/mds.29415.
[12]
Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease[J]. Ann Neurol, 2013, 74(3): 449-457. DOI: 10.1002/ana.23951.
[13]
Evers J, Orłowski J, Jahns H, et al. On-off and proportional closed-loop adaptive deep brain stimulation reduces motor symptoms in freely moving hemiparkinsonian rats[J]. Neuromodulation, 2024, 27(3): 476-488. DOI: 10.1016/j.neurom.2023.03.018.
[14]
Little S, Tripoliti E, Beudel M, et al. Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting [J]. J Neurol Neurosurg Psychiatry, 2016, 87(12): 1388-1389. DOI: 10.1136/jnnp-2016-313518.
[15]
Piña-Fuentes D, van Dijk JMC, van Zijl JC, et al. Acute effects of adaptive deep brain stimulation in Parkinson's disease[J]. Brain Stimul, 2020, 13(6): 1507-1516. DOI: 10.1016/j.brs.2020.07.016.
[16]
Bichsel O, Stieglitz L, Oertel M, et al. The modulatory effect of self-paced and cued motor execution on subthalamic beta-bursts in Parkinson's disease: evidence from deep brain recordings in humans [J]. Neurobiol Dis, 2022, 172: 105818. DOI: 10.1016/j.nbd.2022.105818.
[17]
Litvak V, Florin E, Tamás G, et al. EEG and MEG primers for tracking DBS network effects[J]. Neuroimage, 2021, 224: 117447. DOI: 10.1016/j.neuroimage.2020.117447.
[18]
Melon C, Chassain C, Bielicki G, et al. Progressive brain metabolic changes under deep brain stimulation of subthalamic nucleus in Parkinsonian rats[J]. J Neurochem, 2015, 132(6): 703-712. DOI: 10.1111/jnc.13015.
[19]
Naour AL, Beziat E, Kam JH, et al. Do astrocytes respond to light, sound, or electrical stimulation?[J]. Neural Regen Res, 2023, 18(11): 2343-2347. DOI: 10.4103/1673-5374.371343.
[20]
Hoang KB, Turner DA. The emerging role of biomarkers in adaptive modulation of clinical brain stimulation[J]. Neurosurgery, 2019, 85(3): E430-E439. DOI: 10.1093/neuros/nyz096.
[21]
Bočková M, Rektor I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges[J]. J Neural Transm (Vienna), 2021, 128(8): 1169-1175. DOI: 10.1007/s00702-021-02381-5.
[22]
van Wijk BCM, de Bie RMA, Beudel M. A systematic review of local field potential physiomarkers in Parkinson's disease: from clinical correlations to adaptive deep brain stimulation algorithms[J]. J Neurol, 2023, 270(2): 1162-1177. DOI: 10.1007/s00415-022-11388-1.
[23]
Trager MH, Koop MM, Velisar A, et al. Subthalamic beta oscillations are attenuated after withdrawal of chronic high frequency neurostimulation in Parkinson's disease[J]. Neurobiol Dis, 2016, 96: 22-30. DOI: 10.1016/j.nbd.2016.08.003.
[24]
Stanslaski S, Summers RLS, Tonder L, et al. Sensing data and methodology from the adaptive DBS algorithm for personalized therapy in Parkinson's disease (ADAPT-PD) clinical trial[J]. NPJ Parkinsons Dis, 2024, 10(1): 174. DOI: 10.1038/s41531-024-00772-5.
[25]
Jiang X, Yang J, Wang Z, et al. Functional interaction of abnormal beta and gamma oscillations on bradykinesia in Parkinsonian rats[J]. Brain Res Bull, 2024, 209: 110911. DOI: 10.1016/j.brainresbull.2024.110911.
[26]
Köhler RM, Binns TS, Merk T, et al. Dopamine and deep brain stimulation accelerate the neural dynamics of volitional action in Parkinson's disease[J]. Brain, 2024, 147(10): 3358-3369. DOI: 10.1093/brain/awae219.
[27]
Salehi N, Nahrgang S, Petershagen W, et al. Theta frequency deep brain stimulation in the subthalamic nucleus improves working memory in Parkinson's disease[J]. Brain, 2024, 147(4): 1190-1196. DOI: 10.1093/brain/awad433.
[28]
Sweeney-Reed CM, Zaehle T, Voges J, et al. Pre-stimulus thalamic theta power predicts human memory formation[J]. Neuroimage, 2016, 138: 100-108. DOI: 10.1016/j.neuroimage.2016.05.042.
[29]
Burgess JG, Warwick K, Ruiz V, et al. Identifying tremor-related characteristics of basal ganglia nuclei during movement in the Parkinsonian patient[J]. Parkinsonism Relat Disord, 2010, 16(10): 671-675. DOI: 10.1016/j.parkreldis.2010.08.025.
[30]
Air EL, Ryapolova-Webb E, de Hemptinne C, et al. Acute effects of thalamic deep brain stimulation and thalamotomy on sensorimotor cortex local field potentials in essential tremor[J]. Clin Neurophysiol, 2012, 123(11): 2232-2238. DOI: 10.1016/j.clinph.2012.04.020.
[31]
Hoang KB, Cassar IR, Grill WM, et al. Biomarkers and stimulation algorithms for adaptive brain stimulation[J]. Front Neurosci, 2017, 11: 564. DOI: 10.3389/fnins.2017.00564.
[32]
de Hemptinne C, Ryapolova-Webb ES, Air EL, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease[J]. Proc Natl Acad Sci USA, 2013, 110(12): 4780-4785. DOI: 10.1073/pnas.1214546110.
[33]
Piña-Fuentes D, Beudel M, Little S, et al. Adaptive deep brain stimulation as advanced Parkinson's disease treatment (ADAPT study): protocol for a pseudo-randomised clinical study[J]. BMJ Open, 2019, 9(6): e029652. DOI: 10.1136/bmjopen-2019-029652.
[34]
Oehrn CR, Cernera S, Hammer LH, et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson's disease: a blinded randomized feasibility trial[J]. Nat Med, 2024, 30(11): 3345-3356. DOI: 10.1038/s41591-024-03196-z.
[35]
Petraglia FW, 3rd, Farber SH, Han JL, et al. Comparison of bilateral vs. Staged unilateral Deep Brain Stimulation (DBS) in Parkinson's disease in patients under 70 years of age[J]. Neuromodulation, 2016, 19(1): 31-37. DOI: 10.1111/ner.12351.
[36]
石林,李秉心,杨舟, 等. 脑部电刺激作用机制研究进展[J]. 中国微侵袭神经外科杂志, 2024, 28(6): 321-330. DOI: 10.11850/j.issn.1009-122X.2024.06.001.
[37]
Oslin SJ, Shi HH, Conner AK. Preventing sudden cessation of implantable pulse generators in deep brain stimulation: a systematic review and protocol proposal[J]. Stereotact Funct Neurosurg, 2024, 102(2): 127-134. DOI: 10.1159/000535880.
[38]
Thenaisie Y, Palmisano C, Canessa A, et al. Towards adaptive deep brain stimulation: clinical and technical notes on a novel commercial device for chronic brain sensing[J]. J Neural Eng, 2021, 18(4): 042002. DOI: 10.1088/1741-2552/ac1d5b.
[39]
Lee HM, Park H, Ghovanloo M. A power-efficient wireless system with adaptive supply control for deep brain stimulation[J]. IEEE J Solid-State Circuits, 2013, 48(9): 2203-2216. DOI: 10.1109/jssc.2013.2266862.
[40]
Ria N, Eladly A, Masvidal-Codina E, et al. Flexible graphene-based neurotechnology for high-precision deep brain mapping and neuromodulation in Parkinsonian rats[J]. Nat Commun, 2025, 16(1): 2891. DOI: 10.1038/s41467-025-58156-z.
[41]
Chandrabhatla AS, Pomeraniec IJ, Horgan TM, et al. Landscape and future directions of machine learning applications in closed-loop brain stimulation[J]. NPJ Digit Med, 2023, 6(1): 79. DOI: 10.1038/s41746-023-00779-x.
[1] 王茹倩, 罗红, 曹威特. 子宫血管周上皮细胞瘤诊疗的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(02): 151-156.
[2] 田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰. 生物信息学筛选相关肺纤维化诊断的生物标志物研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 534-539.
[3] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[4] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[5] 张睿敏, 董哲毅, 王倩, 陈香美. 肾小管间质纤维化生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 91-96.
[6] 章敏. 利用多组学技术筛选慢性肾脏病早期预警和预后标志物[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 120-120.
[7] 张泽瀚, 费晓炜, 吕伟豪, 蔡敏, 庄茁, 王化宁, 费舟. 创伤后应激障碍的生物标志物研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 185-191.
[8] 张衡, 施歌, 张泽, 高振轩, 杨文强, 王琦, 张黎, 闫晋利. 基于血浆转录组学建立糖尿病周围神经病的生物标志物[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 127-134.
[9] 甄雪克. 原发性帕金森病的诊疗进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 191-192.
[10] 刘麒, 陈萍, 曹筱璇, 周梅, 张斌强, 朱文博. 幽门螺杆菌感染对帕金森病患者疾病进展及外周炎症因子、凝血功能指标特征的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 262-266.
[11] 王美琴, 潘海涛, 陈祥菲, 吴婉, 周昱和, 王砚青. S100B 蛋白在心血管疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 229-233.
[12] 王颖, 杨焱焱, 牛雯晓, 李梦凡, 张金彪. 非体位性阻塞性睡眠呼吸暂停与认知功能障碍的相关性研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 108-116.
[13] 名强, 刘芮, 付春来, 龚丽亚, 胡莹莹, 陈家隆, 张贺. MCC950通过抑制神经炎症缓解鱼藤酮所致多巴胺能神经元凋亡[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(02): 72-78.
[14] 王思泽, 王春梅. Wnt/β-连环素信号通路在中枢神经系统疾病中的研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 133-139.
[15] 郑锐滨, 赵象文. 肥胖与非肥胖人群血清代谢激素谱的差异分析[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(02): 100-103.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?