切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 309 -313. doi: 10.3877/cma.j.issn.2095-123X.2025.05.010

综述

外泌体在脑卒中诊断与治疗中的基础研究进展
张瑜, 薛建琴(), 张抗, 孙美美   
  1. 213200 江苏常州,江苏大学附属金坛医院康复医学科
  • 收稿日期:2025-01-09 出版日期:2025-10-15
  • 通信作者: 薛建琴

Basic research progress of exosomes in the diagnosis and treatment of stroke

Yu Zhang, Jianqin Xue(), Kang Zhang, Meimei Sun   

  1. Department of Rehabilitation Medicine, Jintan Hospital Attached to Jiangsu University, Changzhou 213200, China
  • Received:2025-01-09 Published:2025-10-15
  • Corresponding author: Jianqin Xue
  • Supported by:
    Clinical Medical Science and Technology Development Fund of Jiangsu University(JLY2021094)
引用本文:

张瑜, 薛建琴, 张抗, 孙美美. 外泌体在脑卒中诊断与治疗中的基础研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 309-313.

Yu Zhang, Jianqin Xue, Kang Zhang, Meimei Sun. Basic research progress of exosomes in the diagnosis and treatment of stroke[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(05): 309-313.

脑卒中具有高发病率和高复发率的特点,是致死和致残的主要疾病之一,目前其诊断及评估方法存在一定的局限性,现有临床治疗手段也难以覆盖疾病需求。外泌体是在脑卒中的病理生理过程中发挥信息传递与靶向调控的重要载体,有望成为脑卒中诊断及预后评估的特异性生物标志物,并在疾病发生发展过程中发挥积极的治疗作用。而工程化外泌体的技术为脑卒中的治疗开辟了一条新路径,这一理念也为发挥和揭示针灸效应提供新的思路和手段。本文围绕外泌体在脑卒中的诊断评估及相关治疗机制方面的基础研究进展进行综述,以期为脑卒中的诊断和治疗的相关研究提供参考。

Stroke is characterized by high incidence and recurrence rates, ranking among the leading causes of mortality and disability. Currently, diagnostic and assessment approaches for stroke are associated with certain limitations, and existing clinical therapeutic strategies fail to fully address disease-specific requirements. Accumulating evidence has demonstrated that exosomes act as critical carriers mediating information transmission and targeted regulation in the pathophysiological processes of stroke. Exosomes hold promise as specific biomarkers for stroke diagnosis and prognostic assessment, while also exerting a positive therapeutic effect during disease initiation and progression. Moreover, the technology of engineered exosomes has opened a new path for the treatment of stroke, and this concept also provides new insights and methods for exerting and revealing acupuncture effects. This review summarizes fundamental research on exosomes in the context of stroke diagnosis, assessment, and relevant therapeutic mechanisms, aiming to provide insights for future investigations into stroke diagnosis and treatment.

[1]
《中国卒中中心报告2020》编写组.《中国卒中中心报告2020》概要[J].中国脑血管病杂志, 2021, 18(11): 737-743. DOI: 10.3969/j.issn.1672-5921.2021.11.001.
[2]
王拥军,李子孝,谷鸿秋,等.中国卒中报告2020(中文版)(1)[J].中国卒中杂志, 2022, 17(5): 433-447. DOI: 10.3969/j.issn.1673-5765.2022.05.001.
[3]
Mead GE, Sposato LA, Sampaio Silva G, et al. A systematic review and synthesis of global stroke guidelines on behalf of the world stroke organization[J]. Int J Stroke, 2023, 18(5): 499-531. DOI: 10.1177/17474930231156753.
[4]
Dagonnier M, Donnan GA, Davis SM, et al. Acute stroke biomarkers: are we there yet?[J]. Front Neurol, 2021, 12: 619721. DOI: 10.3389/fneur.2021.619721.
[5]
Chen X, Luo Q. Potential clinical applications of exosomes in the diagnosis, treatment, and prognosis of cardiovascular diseases: a narrative review[J]. Ann Transl Med, 2022, 10(6): 372. DOI: 10.21037/atm-22-619.
[6]
Alzahrani FA, Riza YM, Eid TM, et al. Exosomes in vascular/neurological disorders and the road ahead[J]. Cells, 2024, 13(8): 670. DOI: 10.3390/cells13080670.
[7]
Wang J, Hu WW, Jiang Z, et al. Advances in treatment of neurodegenerative diseases: perspectives for combination of stem cells with neurotrophic factors[J]. World J Stem Cells, 2020, 12(5): 323-338. DOI: 10.4252/wjsc.v12.i5.323.
[8]
陶栎,张月辉,王相明.急性缺血性卒中院前急救体系的研究进展[J].中华脑科疾病与康复杂志(电子版), 2024, 14(1): 56-60. DOI: 10.3877/cma.j.issn.2095-123X.2024.01.008.
[9]
Akbarzadeh MA, Sanaie S, Kuchaki Rafsanjani M, et al. Role of imaging in early diagnosis of acute ischemic stroke: a literature review[J]. Egypt J Neurol Psychiatry Neurosurg, 2021, 57: 175. DOI: 10.1186/s41983-021-00432-y.
[10]
Kidwell CS, Starkman S, Ecksteln M, et al. Identifying stroke in the field: prospective validation of the Los Angeles Prehospital Stroke Screen (LAPSS)[J]. Stroke, 2000, 31(1): 71-76. DOI: 10.1161/01.STR.31.1.71.
[11]
Lu Y, Tang H, Li S, et al. Role of extracellular vesicles in stroke: recent advances and therapeutic implications[J]. Biomedicine & Pharmacotherapy, 2023, 157: 114002. DOI: 10.1016/j.biopha.2023.114002.
[12]
Jiang S, Wu J, Geng Y, et al. Identification of differentially expressed microRNAs associated with ischemic stroke by integrated bioinformatics approaches[J]. Int J Genomics, 2022, 2022: 9264555. DOI: 10.1155/2022/9264555.
[13]
Yousif G, Qadri S, Haik M, et al. Circulating exosomes of neuronal origin as potential early biomarkers for development of stroke[J]. Mol Diagn Ther, 2021, 25(2): 163-180. DOI: 10.1007/s40291-020-00508-0.
[14]
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p[J]. Cerebrovasc Dis, 2018, 45(5-6): 204-212. DOI: 10.1159/000488365.
[15]
Lee EC, Ha TW, Lee DH, et al. Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment[J]. Int J Mol Sci, 2022, 23(15): 8367. DOI: 10.3390/ijms23158367.
[16]
苗楠,宗子钰.脑出血后继发性脑损伤与线粒体相关机制的研究进展[J].中华神经创伤外科电子杂志, 2024, 10(2): 107-111. DOI: 10.3877/cma.j.issn.2095-9141.2024.02.008.
[17]
Fan W, Li X, Zhang D, et al. Detrimental role of miRNA-144-3p in intracerebral hemorrhage induced secondary brain injury is mediated by formyl peptide receptor 2 downregulation both In Vivo and In Vitro[J]. Cell Transplant, 2019, 28(6): 723-738. DOI: 10.1177/0963689718817219.
[18]
王孟杰,冯嵩,马文渊,等.外泌体及其携带的microRNA与脑卒中的研究进展[J].中华脑血管病杂志(电子版), 2021, 15(6): 418-421. DOI: 10.11817/j.issn.1673-9248.2021.06.012.
[19]
Jiang S, Hu L, Zhou H, et al. Novel therapeutic mechanisms and strategies for intracerebral hemorrhage: focusing on exosomes[J]. Int J Nanomedicine, 2024, 19: 8987-9007. DOI: 10.2147/ijn.S473611.
[20]
Al-Kawaz MN, Hanley DF, Ziai W. Advances in therapeutic approaches for spontaneous intracerebral hemorrhage[J]. Neurotherapeutics, 2020, 17(4): 1757-1767. DOI: 10.1007/s13311-020-00902-w.
[21]
Nasirishargh A, Kumar P, Ramasubramanian L, et al. Exosomal microRNAs from mesenchymal stem/stromal cells: biology and applications in neuroprotection[J]. World J Stem Cells, 2021, 13(7): 776-794. DOI: 10.4252/wjsc.v13.i7.776.
[22]
Xia X, Wang Y, Huang Y, et al. Exosomal mirnas in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents[J]. Prog Neurobiol, 2019, 183: 101694. DOI: 10.1016/j.pneurobio.2019.101694.
[23]
Forró T, Bajkó Z, Bălaşa A, et al. Dysfunction of the neurovascular unit in ischemic stroke: highlights on microRNAs and exosomes as potential biomarkers and therapy[J]. Int J Mol Sci, 2021, 22(11): 5621. DOI: 10.3390/ijms22115621.
[24]
Long X, Yao X, Jiang Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 89. DOI: 10.1186/s12974-020-01761-0.
[25]
Zhang YU, Ye G, Zhao J, et al. Exosomes carried miR-181c-5p alleviates neuropathic pain in CCI rat models[J]. An Acad Bras Cienc, 2022, 94(3): e20210564. DOI: 10.1590/0001-3765202220210564.
[26]
Ding H, Jia Y, Lv H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway[J]. J Endocrinol Invest, 2021, 44(12): 2685-2698. DOI: 10.1007/s40618-021-01583-8.
[27]
Duan S, Wang F, Cao J, et al. Exosomes derived from microRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial m1 polarization[J]. Drug Des Devel Ther, 2020, 14: 3143-3158. DOI: 10.2147/dddt.S255828.
[28]
Gao X, Xiong Y, Li Q, et al. Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage[J]. Cell Death Dis, 2020, 11(5): 363. DOI: 10.1038/s41419-020-2530-0.
[29]
Wang Y, Zhang L, Lv L, et al. Dendritic cell-derived exosomal miR-3064-5p inhibits SIRT6/PCSK9 to protect the blood-brain barrier after subarachnoid hemorrhage[J]. J Biochem Mol Toxicol, 2023, 37(6): e23346. DOI: 10.1002/jbt.23346.
[30]
林慧洁,黄云,黄志华,等.载药外泌体在中枢神经系统疾病中的热点问题[J].中国组织工程研究, 2025, 29(23): 5013-5021. DOI: 10.12307/2025.084.
[31]
Ma D, Shen H, Chen F, et al. Inflammatory microenvironment-responsive nanomaterials promote spinal cord injury repair by targeting IRF5[J]. Adv Healthc Mater, 2022, 11(23): e2201319. DOI: 10.1002/adhm.202201319.
[32]
Guo L, Huang Z, Huang L, et al. Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons[J]. J Nanobiotechnology, 2021, 19(1): 141. DOI: 10.1186/s12951-021-00879-4.
[33]
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150: 137-149. DOI: 10.1016/j.biomaterials.2017.10.012.
[34]
雒慧钧,黄芷璇,史一杰.功能化外泌体载人参皂苷Rg1治疗缺血性脑卒中[J].生物工程学报, 2023, 39(1): 275-285. DOI: 10.13345/j.cjb.220253.
[35]
李柠岑,郭义,陈波,等. "针刺网络药"-基于针刺网络调节特点的外泌体转化应用策略[J].针刺研究, 2021, 46(6): 464-468. DOI: 10.13702/j.1000-0607.201216.
[36]
Xu SY, Zeng CL, Ni SM, et al. The angiogenesis effects of electroacupuncture treatment via exosomal miR-210 in cerebral ischemia-reperfusion rats[J]. Curr Neurovasc Res, 2022, 19(1): 61-72. DOI: 10.2174/1567202619666220321115412.
[1] 杨一辰, 廖习成, 马玥麟, 李迎, 王祥柱. 基于旁路的复杂器械分离经根管取出策略探索与疗效评价[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 369-377.
[2] 高加勒, 张忠涛. 结直肠癌外科领域最新进展与热点[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 595-599.
[3] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[4] 薛兆强, 袁寅. 双镜联合保功能胃癌根治术治疗早期近端胃癌的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 628-632.
[5] 王思竣, 王琼, 李珂雨, 袁新普, 张硕珉, 马睿, 谢天宇, 张朝军. 胃上部癌新辅助化疗联合免疫治疗后实施近端胃切除术的临床疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 637-641.
[6] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[7] 泌尿功能障碍预防和康复联盟. 中国老年脑卒中患者相关泌尿功能障碍管理指南(2025版)[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 681-692.
[8] 程必盛, 吴芃. 2025EAU年会要点:微创、远程与精准泌尿外科的发展趋势[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 693-699.
[9] 李瑞芳, 王明帅, 邢念增. 循环肿瘤细胞在膀胱癌诊断和预后中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 705-713.
[10] 蔡建珊, 陈进宏. 同时性结直肠癌肝转移手术策略[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 813-821.
[11] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[12] 王利皓, 罗世超, 唐强, 尚栋良, 段少博, 卢冰, 李海, 薛飞. 仑伐替尼和PD-1抑制剂预处理联合TACE序贯治疗CNLC分期Ⅲ期肝癌疗效及安全性[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 868-874.
[13] 皇立媛, 浦洁, 王苏贵, 陈婷婷, 朱德慧, 胡雪. 中青年脑卒中患者应激障碍风险预测模型的构建与验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 504-512.
[14] 姜宇丰, 张睿, 闵红巍. 全关节置换术后异位骨化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 526-531.
[15] 王春茂, 韩鸣, 王子彤. 局限期小细胞肺癌新辅助治疗后完全病理学缓解五例[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 550-554.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?