| [1] |
|
| [2] |
|
| [3] |
Mead GE, Sposato LA, Sampaio Silva G, et al. A systematic review and synthesis of global stroke guidelines on behalf of the world stroke organization[J]. Int J Stroke, 2023, 18(5): 499-531. DOI: 10.1177/17474930231156753.
|
| [4] |
Dagonnier M, Donnan GA, Davis SM, et al. Acute stroke biomarkers: are we there yet?[J]. Front Neurol, 2021, 12: 619721. DOI: 10.3389/fneur.2021.619721.
|
| [5] |
Chen X, Luo Q. Potential clinical applications of exosomes in the diagnosis, treatment, and prognosis of cardiovascular diseases: a narrative review[J]. Ann Transl Med, 2022, 10(6): 372. DOI: 10.21037/atm-22-619.
|
| [6] |
Alzahrani FA, Riza YM, Eid TM, et al. Exosomes in vascular/neurological disorders and the road ahead[J]. Cells, 2024, 13(8): 670. DOI: 10.3390/cells13080670.
|
| [7] |
Wang J, Hu WW, Jiang Z, et al. Advances in treatment of neurodegenerative diseases: perspectives for combination of stem cells with neurotrophic factors[J]. World J Stem Cells, 2020, 12(5): 323-338. DOI: 10.4252/wjsc.v12.i5.323.
|
| [8] |
|
| [9] |
Akbarzadeh MA, Sanaie S, Kuchaki Rafsanjani M, et al. Role of imaging in early diagnosis of acute ischemic stroke: a literature review[J]. Egypt J Neurol Psychiatry Neurosurg, 2021, 57: 175. DOI: 10.1186/s41983-021-00432-y.
|
| [10] |
Kidwell CS, Starkman S, Ecksteln M, et al. Identifying stroke in the field: prospective validation of the Los Angeles Prehospital Stroke Screen (LAPSS)[J]. Stroke, 2000, 31(1): 71-76. DOI: 10.1161/01.STR.31.1.71.
|
| [11] |
Lu Y, Tang H, Li S, et al. Role of extracellular vesicles in stroke: recent advances and therapeutic implications[J]. Biomedicine & Pharmacotherapy, 2023, 157: 114002. DOI: 10.1016/j.biopha.2023.114002.
|
| [12] |
Jiang S, Wu J, Geng Y, et al. Identification of differentially expressed microRNAs associated with ischemic stroke by integrated bioinformatics approaches[J]. Int J Genomics, 2022, 2022: 9264555. DOI: 10.1155/2022/9264555.
|
| [13] |
Yousif G, Qadri S, Haik M, et al. Circulating exosomes of neuronal origin as potential early biomarkers for development of stroke[J]. Mol Diagn Ther, 2021, 25(2): 163-180. DOI: 10.1007/s40291-020-00508-0.
|
| [14] |
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p[J]. Cerebrovasc Dis, 2018, 45(5-6): 204-212. DOI: 10.1159/000488365.
|
| [15] |
Lee EC, Ha TW, Lee DH, et al. Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment[J]. Int J Mol Sci, 2022, 23(15): 8367. DOI: 10.3390/ijms23158367.
|
| [16] |
|
| [17] |
Fan W, Li X, Zhang D, et al. Detrimental role of miRNA-144-3p in intracerebral hemorrhage induced secondary brain injury is mediated by formyl peptide receptor 2 downregulation both In Vivo and In Vitro[J]. Cell Transplant, 2019, 28(6): 723-738. DOI: 10.1177/0963689718817219.
|
| [18] |
|
| [19] |
Jiang S, Hu L, Zhou H, et al. Novel therapeutic mechanisms and strategies for intracerebral hemorrhage: focusing on exosomes[J]. Int J Nanomedicine, 2024, 19: 8987-9007. DOI: 10.2147/ijn.S473611.
|
| [20] |
Al-Kawaz MN, Hanley DF, Ziai W. Advances in therapeutic approaches for spontaneous intracerebral hemorrhage[J]. Neurotherapeutics, 2020, 17(4): 1757-1767. DOI: 10.1007/s13311-020-00902-w.
|
| [21] |
Nasirishargh A, Kumar P, Ramasubramanian L, et al. Exosomal microRNAs from mesenchymal stem/stromal cells: biology and applications in neuroprotection[J]. World J Stem Cells, 2021, 13(7): 776-794. DOI: 10.4252/wjsc.v13.i7.776.
|
| [22] |
Xia X, Wang Y, Huang Y, et al. Exosomal mirnas in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents[J]. Prog Neurobiol, 2019, 183: 101694. DOI: 10.1016/j.pneurobio.2019.101694.
|
| [23] |
Forró T, Bajkó Z, Bălaşa A, et al. Dysfunction of the neurovascular unit in ischemic stroke: highlights on microRNAs and exosomes as potential biomarkers and therapy[J]. Int J Mol Sci, 2021, 22(11): 5621. DOI: 10.3390/ijms22115621.
|
| [24] |
Long X, Yao X, Jiang Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1): 89. DOI: 10.1186/s12974-020-01761-0.
|
| [25] |
Zhang YU, Ye G, Zhao J, et al. Exosomes carried miR-181c-5p alleviates neuropathic pain in CCI rat models[J]. An Acad Bras Cienc, 2022, 94(3): e20210564. DOI: 10.1590/0001-3765202220210564.
|
| [26] |
Ding H, Jia Y, Lv H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway[J]. J Endocrinol Invest, 2021, 44(12): 2685-2698. DOI: 10.1007/s40618-021-01583-8.
|
| [27] |
Duan S, Wang F, Cao J, et al. Exosomes derived from microRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial m1 polarization[J]. Drug Des Devel Ther, 2020, 14: 3143-3158. DOI: 10.2147/dddt.S255828.
|
| [28] |
Gao X, Xiong Y, Li Q, et al. Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage[J]. Cell Death Dis, 2020, 11(5): 363. DOI: 10.1038/s41419-020-2530-0.
|
| [29] |
Wang Y, Zhang L, Lv L, et al. Dendritic cell-derived exosomal miR-3064-5p inhibits SIRT6/PCSK9 to protect the blood-brain barrier after subarachnoid hemorrhage[J]. J Biochem Mol Toxicol, 2023, 37(6): e23346. DOI: 10.1002/jbt.23346.
|
| [30] |
林慧洁,黄云,黄志华,等.载药外泌体在中枢神经系统疾病中的热点问题[J]. 中国组织工程研究, 2025, 29(23): 5013-5021. DOI: 10.12307/2025.084.
|
| [31] |
Ma D, Shen H, Chen F, et al. Inflammatory microenvironment-responsive nanomaterials promote spinal cord injury repair by targeting IRF5[J]. Adv Healthc Mater, 2022, 11(23): e2201319. DOI: 10.1002/adhm.202201319.
|
| [32] |
Guo L, Huang Z, Huang L, et al. Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons[J]. J Nanobiotechnology, 2021, 19(1): 141. DOI: 10.1186/s12951-021-00879-4.
|
| [33] |
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150: 137-149. DOI: 10.1016/j.biomaterials.2017.10.012.
|
| [34] |
|
| [35] |
|
| [36] |
Xu SY, Zeng CL, Ni SM, et al. The angiogenesis effects of electroacupuncture treatment via exosomal miR-210 in cerebral ischemia-reperfusion rats[J]. Curr Neurovasc Res, 2022, 19(1): 61-72. DOI: 10.2174/1567202619666220321115412.
|