| [1] |
Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain[J]. Nat Rev Dis Primers, 2017, 3: 17002. DOI: 10.1038/nrdp.2017.2.
|
| [2] |
Wang Z, Liu F, Wei M, et al. Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway[J]. J Neuroinflammation, 2018, 15(1): 179. DOI: 10.1186/s12974-018-1215-4.
|
| [3] |
|
| [4] |
Tashima R, Koga K, Sekine M, et al. Optogenetic activation of non-nociceptive Aβ fibers induces neuropathic pain-like sensory and emotional behaviors after nerve injury in rats[J]. eNeuro, 2018, 5(1): ENEURO.0450-17.2018. DOI: 10.1523/eneuro.0450-17.2018.
|
| [5] |
Cobos EJ, Nickerson CA, Gao F, et al. Mechanistic differences in neuropathic pain modalities revealed by correlating behavior with global expression profiling[J]. Cell Rep, 2018, 22(5): 1301-1312. DOI: 10.1016/j.celrep.2018.01.006.
|
| [6] |
Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment[J]. Physiol Rev, 2021, 101(1): 259-301. DOI: 10.1152/physrev.00045.2019.
|
| [7] |
Duan B, Cheng L, Bourane S, et al. Identification of spinal circuits transmitting and gating mechanical pain[J]. Cell, 2014, 159(6): 1417-1432. DOI: 10.1016/j.cell.2014.11.003.
|
| [8] |
Peirs C, Williams SP, Zhao X, et al. Dorsal horn circuits for persistent mechanical pain[J]. Neuron, 2015, 87(4): 797-812. DOI: 10.1016/j.neuron.2015.07.029.
|
| [9] |
Petitjean H, Pawlowski SA, Fraine SL, et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury[J]. Cell Rep, 2015, 13(6): 1246-1257. DOI: 10.1016/j.celrep.2015.09.080.
|
| [10] |
Bráz JM, Sharif-Naeini R, Vogt D, et al. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain[J]. Neuron, 2012, 74(4): 663-675. DOI: 10.1016/j.neuron.2012.02.033.
|
| [11] |
Guan Z, Kuhn JA, Wang X, et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain[J]. Nat Neurosci, 2016, 19(1): 94-101. DOI: 10.1038/nn.4189.
|
| [12] |
Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis[J]. Lancet Neurol, 2015, 14(2): 162-173. DOI: 10.1016/s1474-4422(14)70251-0.
|
| [13] |
Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation[J]. Science, 2016, 354(6312): 572-577. DOI: 10.1126/science.aaf8924.
|
| [14] |
Kobayashi Y, Kiguchi N, Fukazawa Y, et al. Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system[J]. J Biol Chem, 2015, 290(20): 12603-12613. DOI: 10.1074/jbc.M115.636506.
|
| [15] |
Ding W, You Z, Chen Q, et al. Gut microbiota influences neuropathic pain through modulating proinflammatory and anti-inflammatory T cells: erratum[J]. Anesth Analg, 2022, 135(1): e10. DOI: 10.1213/ane.0000000000006043.
|
| [16] |
Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines[J]. J Neuroimmunol, 2010, 229(1-2): 26-50. DOI: 10.1016/j.jneuroim.2010.08.013.
|
| [17] |
Zhang C, Li Y, Yu Y, et al. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects[J]. Front Immunol, 2024, 15: 1334828. DOI: 10.3389/fimmu.2024.1334828.
|
| [18] |
|
| [19] |
Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation [J]. J Exp Med, 1996, 184(2): 387-396. DOI: 10.1084/jem.184.2.387.
|
| [20] |
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
|
| [21] |
Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy[J]. J Pediatr, 1982, 100(5): 731-737. DOI: 10.1016/s0022-3476(82)80573-8.
|
| [22] |
Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other[J]. Trends Immunol, 2008, 29(9): 429-435. DOI: 10.1016/j.it.2008.06.005.
|
| [23] |
Jonuleit H, Schmitt E, Schuler G, et al. Induction of interleukin 10-producing, nonproliferating CD4 + T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells[J]. J Exp Med, 2000, 192(9): 1213-1222. DOI: 10.1084/jem.192.9.1213.
|
| [24] |
Kitagawa Y, Ohkura N, Kidani Y, et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment [J]. Nat Immunol, 2017, 18(2): 173-183. DOI: 10.1038/ni.3646.
|
| [25] |
Wohlfert EA, Grainger JR, Bouladoux N, et al. GATA3 controls Foxp3 + regulatory T cell fate during inflammation in mice[J]. J Clin Invest, 2011, 121(11): 4503-4515. DOI: 10.1172/jci57456.
|
| [26] |
|
| [27] |
Akkaya B, Shevach EM. Regulatory T cells: master thieves of the immune system[J]. Cell Immunol, 2020, 355: 104160. DOI: 10.1016/j.cellimm.2020.104160.
|
| [28] |
Proto JD, Doran AC, Gusarova G, et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution[J]. Immunity, 2018, 49(4): 666-677.e6. DOI: 10.1016/j.immuni.2018.07.015.
|
| [29] |
Chen L, Huang H, Zhang W, et al. Exosomes derived from t regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival[J]. Med Sci Monit, 2019, 25: 4877-4884. DOI: 10.12659/msm.917058.
|
| [30] |
Tung SL, Boardman DA, Sen M, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function[J]. Sci Rep, 2018, 8(1): 6065. DOI: 10.1038/s41598-018-24531-8.
|
| [31] |
|
| [32] |
Vignali DA, Collison LW, Workman CJ. How regulatory T cells work[J]. Nat Rev Immunol, 2008, 8(7): 523-532. DOI: 10.1038/nri2343.
|
| [33] |
Carson BD, Ziegler SF. Impaired T cell receptor signaling in Foxp3+ CD4 T cells[J]. Ann N Y Acad Sci, 2007, 1103: 167-178. DOI: 10.1196/annals.1394.022.
|
| [34] |
Su W, Chen X, Zhu W, et al. The cAMP-adenosine feedback loop maintains the suppressive function of regulatory T cells[J]. J Immunol, 2019, 203(6): 1436-1446. DOI: 10.4049/jimmunol.1801306.
|
| [35] |
Davoli-Ferreira M, de Lima KA, Fonseca MM, et al. Regulatory T cells counteract neuropathic pain through inhibition of the Th1 response at the site of peripheral nerve injury[J]. Pain, 2020, 161(8): 1730-1743. DOI: 10.1097/j.pain.0000000000001879.
|
| [36] |
Fischer R, Sendetski M, Del Rivero T, et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes[J]. Proc Natl Acad Sci USA, 2019, 116(34): 17045-17050. DOI: 10.1073/pnas.1902091116.
|
| [37] |
Rowe RK, Ellis GI, Harrison JL, et al. Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge[J]. Mol Pain, 2016, 12: 1744806916647055. DOI: 10.1177/1744806916647055.
|
| [38] |
Lee HJ, Remacle AG, Hullugundi SK, et al. Sex-specific B cell and anti-myelin autoantibody response after peripheral nerve injury[J]. Front Cell Neurosci, 2022, 16: 835800. DOI: 10.3389/fncel.2022.835800.
|
| [39] |
Li W, Liu R. The causal relationship between immune cells and neuropathic pain: a two-sample mendelian randomization study based on genome-wide association analysis[J]. J Pain Res, 2025, 18: 1515-1523. DOI: 10.2147/jpr.S511182.
|
| [40] |
Hua D, Li S, Li S, et al. Gut microbiome and plasma metabolome signatures in middle-aged mice with cognitive dysfunction induced by chronic neuropathic pain[J]. Front Mol Neurosci, 2021, 14: 806700. DOI: 10.3389/fnmol.2021.806700.
|
| [41] |
Ke F, Benet ZL, Shelyakin P, et al. Targeted checkpoint control of B cells undergoing positive selection in germinal centers by follicular regulatory T cells[J]. Proc Natl Acad Sci USA, 2024, 121(5): e2304020121. DOI: 10.1073/pnas.2304020121.
|
| [42] |
Durante M, Squillace S, Lauro F, et al. Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10[J]. J Clin Invest, 2021, 131(7): e139299. DOI: 10.1172/jci139299.
|
| [43] |
Iwasa T, Afroz S, Inoue M, et al. IL-10 and CXCL2 in trigeminal ganglia in neuropathic pain[J]. Neurosci Lett, 2019, 703: 132-138. DOI: 10.1016/j.neulet.2019.03.031.
|
| [44] |
Duffy SS, Keating BA, Perera CJ, et al. Regulatory T cells and their derived cytokine, interleukin-35, reduce pain in experimental autoimmune encephalomyelitis[J]. J Neurosci, 2019, 39(12): 2326-2346. DOI: 10.1523/jneurosci.1815-18.2019.
|
| [45] |
Lees JG, Duffy SS, Perera CJ, et al. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury[J]. Cytokine, 2015, 71(2): 207-214. DOI: 10.1016/j.cyto.2014.10.028.
|
| [46] |
Hu R, Zhang J, Liu X, et al. Low-dose interleukin-2 and regulatory T cell treatments attenuate punctate and dynamic mechanical allodynia in a mouse model of sciatic nerve injury[J]. J Pain Res, 2021, 14: 893-906. DOI: 10.2147/jpr.S301343.
|
| [47] |
|
| [48] |
Kuhn JA, Vainchtein ID, Braz J, et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice[J]. Elife, 2021, 10: e69056. DOI: 10.7554/eLife.69056.
|
| [49] |
Coraggio V, Guida F, Boccella S, et al. Neuroimmune-driven neuropathic pain establishment: a focus on gender differences[J]. Int J Mol Sci, 2018, 19(1): 281. DOI: 10.3390/ijms19010281.
|
| [50] |
Kiguchi N, Kobayashi D, Saika F, et al. Pharmacological regulation of neuropathic pain driven by inflammatory macrophages [J]. Int J Mol Sci, 2017, 18(11): 2296. DOI: 10.3390/ijms18112296.
|
| [51] |
Wu T, Wang L, Jian C, et al. Regulatory T cell-derived exosome mediated macrophages polarization for osteogenic differentiation in fracture repair[J]. J Control Release, 2024, 369: 266-282. DOI: 10.1016/j.jconrel.2024.03.028.
|
| [52] |
Chen H, Jiang L, Zhang D, et al. Exploring the correlation between the regulation of macrophages by regulatory T cells and peripheral neuropathic pain[J]. Front Neurosci, 2022, 16: 813751. DOI: 10.3389/fnins.2022.813751.
|
| [53] |
Wang R, Liang Q, Zhang Q, et al. Ccl2-induced regulatory T cells balance inflammation through macrophage polarization during liver reconstitution[J]. Adv Sci (Weinh), 2024, 11(45): e2403849. DOI: 10.1002/advs.202403849.
|
| [54] |
Dong S, Hiam-Galvez KJ, Mowery CT, et al. The effect of low-dose IL-2 and treg adoptive cell therapy in patients with type 1 diabetes[J]. JCI Insight, 2021, 6(18): e147474. DOI: 10.1172/jci.insight.147474.
|
| [55] |
Alhosseini MN, Ebadi P, Karimi MH, et al. Therapy with regulatory T-cell infusion in autoimmune diseases and organ transplantation: a review of the strengths and limitations[J]. Transpl Immunol, 2024, 85: 102069. DOI: 10.1016/j.trim.2024.102069.
|
| [56] |
Russo MA, Fiore NT, van Vreden C, et al. Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome[J]. J Neuroinflammation, 2019, 16(1): 63. DOI: 10.1186/s12974-019-1449-9.
|
| [57] |
Galvin DA, C M. The role of T-lymphocytes in neuropathic pain initiation, development of chronicity and treatment[J]. Brain Behav Immun Health, 2021, 18: 100371. DOI: 10.1016/j.bbih.2021.100371.
|
| [58] |
Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3): 158-172. DOI: 10.1038/s41577-019-0232-6.
|
| [59] |
Shi L, Sun Z, Su W, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke[J]. Immunity, 2021, 54(7): 1527-1542. e1528. DOI: 10.1016/j.immuni.2021.04.022.
|
| [60] |
Xie F, Shen B, Luo Y, et al. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6[J]. Mol Neurodegener, 2024, 19(1): 80. DOI: 10.1186/s13024-024-00770-4.
|