切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 303 -308. doi: 10.3877/cma.j.issn.2095-123X.2025.05.009

综述

Treg细胞在神经病理性疼痛中的研究进展
崔滨1, 王丹慧2, 王林1,(), 陈国强1   
  1. 1100012 北京,航空总医院神经外科
    2461000 河南许昌,许昌市中心医院神经内科
  • 收稿日期:2024-12-12 出版日期:2025-10-15
  • 通信作者: 王林

Research progress of Treg cells in neuropathic pain

Bin Cui1, Danhui Wang2, Lin Wang1,(), Guoqiang Chen1   

  1. 1Department of Neurosurgery, Aviation General Hospital, Beijing 100012, China
    2Department of Neurology, Xuchang Central Hospital, Xuchang 461000, China
  • Received:2024-12-12 Published:2025-10-15
  • Corresponding author: Lin Wang
引用本文:

崔滨, 王丹慧, 王林, 陈国强. Treg细胞在神经病理性疼痛中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 303-308.

Bin Cui, Danhui Wang, Lin Wang, Guoqiang Chen. Research progress of Treg cells in neuropathic pain[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(05): 303-308.

神经病理性疼痛(NP)已成为影响人类健康的重大公共卫生问题,其病理机制尚未完全阐明,且现有药物治疗效果尚不理想,急需探寻新的治疗靶点与干预策略。特定免疫细胞亚群及其分泌的介质能够抑制伤害性信号传导,从而促进NP的缓解。调节性T(Treg)细胞作为关键的CD4+T淋巴细胞亚群,通过分泌抑制性细胞因子和细胞接触依赖性机制抑制效应细胞的功能,发挥强大的免疫负向调控作用,具有缓解NP的潜力。本文主要综述NP的发生机制,重点探讨Treg细胞、相关介质及其相互作用在NP发生发展中的作用,以期为深入解析NP的病理机制和开发新型治疗策略提供新的思路与潜在靶点。

Neuropathic pain (NP) has emerged as a major threat to human health, yet its underlying mechanisms remain incompletely understood. Current therapeutic approaches for NP are suboptimal, underscoring the urgency to decipher its potential mechanisms and identify novel therapeutic targets and strategies. Recently, increasing evidence suggests that various immune cells and associated cytokines attach great importance to inhibit nociception and promote the resolution of NP. As a subtype of CD4+T lymphocytes, regulatory T (Treg) cells exert analgesic effects on NP by secreting inhibitory mediators, suppressing effector cells, and other mechanisms. This review synthesizes the latest advances in Treg cells, their cellular mediators, and their interactions in the context of NP, offering new directions and targets for mechanistic research and therapeutic development in this field.

[1]
Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain[J]. Nat Rev Dis Primers, 2017, 3: 17002. DOI: 10.1038/nrdp.2017.2.
[2]
Wang Z, Liu F, Wei M, et al. Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway[J]. J Neuroinflammation, 2018, 15(1): 179. DOI: 10.1186/s12974-018-1215-4.
[3]
Bouhassira D, Attal N. Translational neuropathic pain research: a clinical perspective[J]. Neuroscience, 2016, 338: 27-35. DOI: 10.1016/j.neuroscience.2016.03.029.
[4]
Tashima R, Koga K, Sekine M, et al. Optogenetic activation of non-nociceptive Aβ fibers induces neuropathic pain-like sensory and emotional behaviors after nerve injury in rats[J]. eNeuro, 2018, 5(1): ENEURO.0450-17.2018. DOI: 10.1523/eneuro.0450-17.2018.
[5]
Cobos EJ, Nickerson CA, Gao F, et al. Mechanistic differences in neuropathic pain modalities revealed by correlating behavior with global expression profiling[J]. Cell Rep, 2018, 22(5): 1301-1312. DOI: 10.1016/j.celrep.2018.01.006.
[6]
Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment[J]. Physiol Rev, 2021, 101(1): 259-301. DOI: 10.1152/physrev.00045.2019.
[7]
Duan B, Cheng L, Bourane S, et al. Identification of spinal circuits transmitting and gating mechanical pain[J]. Cell, 2014, 159(6): 1417-1432. DOI: 10.1016/j.cell.2014.11.003.
[8]
Peirs C, Williams SP, Zhao X, et al. Dorsal horn circuits for persistent mechanical pain[J]. Neuron, 2015, 87(4): 797-812. DOI: 10.1016/j.neuron.2015.07.029.
[9]
Petitjean H, Pawlowski SA, Fraine SL, et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury[J]. Cell Rep, 2015, 13(6): 1246-1257. DOI: 10.1016/j.celrep.2015.09.080.
[10]
Bráz JM, Sharif-Naeini R, Vogt D, et al. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain[J]. Neuron, 2012, 74(4): 663-675. DOI: 10.1016/j.neuron.2012.02.033.
[11]
Guan Z, Kuhn JA, Wang X, et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain[J]. Nat Neurosci, 2016, 19(1): 94-101. DOI: 10.1038/nn.4189.
[12]
Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis[J]. Lancet Neurol, 2015, 14(2): 162-173. DOI: 10.1016/s1474-4422(14)70251-0.
[13]
Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation[J]. Science, 2016, 354(6312): 572-577. DOI: 10.1126/science.aaf8924.
[14]
Kobayashi Y, Kiguchi N, Fukazawa Y, et al. Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system[J]. J Biol Chem, 2015, 290(20): 12603-12613. DOI: 10.1074/jbc.M115.636506.
[15]
Ding W, You Z, Chen Q, et al. Gut microbiota influences neuropathic pain through modulating proinflammatory and anti-inflammatory T cells: erratum[J]. Anesth Analg, 2022, 135(1): e10. DOI: 10.1213/ane.0000000000006043.
[16]
Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines[J]. J Neuroimmunol, 2010, 229(1-2): 26-50. DOI: 10.1016/j.jneuroim.2010.08.013.
[17]
Zhang C, Li Y, Yu Y, et al. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects[J]. Front Immunol, 2024, 15: 1334828. DOI: 10.3389/fimmu.2024.1334828.
[18]
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function[J]. Annu Rev Immunol, 2012, 30: 531-564. DOI: 10.1146/annurev.immunol.25.022106.141623.
[19]
Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation [J]. J Exp Med, 1996, 184(2): 387-396. DOI: 10.1084/jem.184.2.387.
[20]
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
[21]
Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy[J]. J Pediatr, 1982, 100(5): 731-737. DOI: 10.1016/s0022-3476(82)80573-8.
[22]
Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other[J]. Trends Immunol, 2008, 29(9): 429-435. DOI: 10.1016/j.it.2008.06.005.
[23]
Jonuleit H, Schmitt E, Schuler G, et al. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells[J]. J Exp Med, 2000, 192(9): 1213-1222. DOI: 10.1084/jem.192.9.1213.
[24]
Kitagawa Y, Ohkura N, Kidani Y, et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment [J]. Nat Immunol, 2017, 18(2): 173-183. DOI: 10.1038/ni.3646.
[25]
Wohlfert EA, Grainger JR, Bouladoux N, et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice[J]. J Clin Invest, 2011, 121(11): 4503-4515. DOI: 10.1172/jci57456.
[26]
Savage PA, Klawon DEJ, Miller CH. Regulatory T cell development [J]. Annu Rev Immunol, 2020, 38: 421-453. DOI: 10.1146/annurev-immunol-100219-020937.
[27]
Akkaya B, Shevach EM. Regulatory T cells: master thieves of the immune system[J]. Cell Immunol, 2020, 355: 104160. DOI: 10.1016/j.cellimm.2020.104160.
[28]
Proto JD, Doran AC, Gusarova G, et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution[J]. Immunity, 2018, 49(4): 666-677.e6. DOI: 10.1016/j.immuni.2018.07.015.
[29]
Chen L, Huang H, Zhang W, et al. Exosomes derived from t regulatory cells suppress CD8+ cytotoxic T lymphocyte proliferation and prolong liver allograft survival[J]. Med Sci Monit, 2019, 25: 4877-4884. DOI: 10.12659/msm.917058.
[30]
Tung SL, Boardman DA, Sen M, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function[J]. Sci Rep, 2018, 8(1): 6065. DOI: 10.1038/s41598-018-24531-8.
[31]
付强,秦丽媛,李全波.神经病理性疼痛患者血清miR-15a水平及意义分析[J].中华脑科疾病与康复杂志(电子版), 2023, 13(5): 293-298. DOI: 10.3877/cma.j.issn.2095-123X.2023.05.006.
[32]
Vignali DA, Collison LW, Workman CJ. How regulatory T cells work[J]. Nat Rev Immunol, 2008, 8(7): 523-532. DOI: 10.1038/nri2343.
[33]
Carson BD, Ziegler SF. Impaired T cell receptor signaling in Foxp3+ CD4 T cells[J]. Ann N Y Acad Sci, 2007, 1103: 167-178. DOI: 10.1196/annals.1394.022.
[34]
Su W, Chen X, Zhu W, et al. The cAMP-adenosine feedback loop maintains the suppressive function of regulatory T cells[J]. J Immunol, 2019, 203(6): 1436-1446. DOI: 10.4049/jimmunol.1801306.
[35]
Davoli-Ferreira M, de Lima KA, Fonseca MM, et al. Regulatory T cells counteract neuropathic pain through inhibition of the Th1 response at the site of peripheral nerve injury[J]. Pain, 2020, 161(8): 1730-1743. DOI: 10.1097/j.pain.0000000000001879.
[36]
Fischer R, Sendetski M, Del Rivero T, et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes[J]. Proc Natl Acad Sci USA, 2019, 116(34): 17045-17050. DOI: 10.1073/pnas.1902091116.
[37]
Rowe RK, Ellis GI, Harrison JL, et al. Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge[J]. Mol Pain, 2016, 12: 1744806916647055. DOI: 10.1177/1744806916647055.
[38]
Lee HJ, Remacle AG, Hullugundi SK, et al. Sex-specific B cell and anti-myelin autoantibody response after peripheral nerve injury[J]. Front Cell Neurosci, 2022, 16: 835800. DOI: 10.3389/fncel.2022.835800.
[39]
Li W, Liu R. The causal relationship between immune cells and neuropathic pain: a two-sample mendelian randomization study based on genome-wide association analysis[J]. J Pain Res, 2025, 18: 1515-1523. DOI: 10.2147/jpr.S511182.
[40]
Hua D, Li S, Li S, et al. Gut microbiome and plasma metabolome signatures in middle-aged mice with cognitive dysfunction induced by chronic neuropathic pain[J]. Front Mol Neurosci, 2021, 14: 806700. DOI: 10.3389/fnmol.2021.806700.
[41]
Ke F, Benet ZL, Shelyakin P, et al. Targeted checkpoint control of B cells undergoing positive selection in germinal centers by follicular regulatory T cells[J]. Proc Natl Acad Sci USA, 2024, 121(5): e2304020121. DOI: 10.1073/pnas.2304020121.
[42]
Durante M, Squillace S, Lauro F, et al. Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10[J]. J Clin Invest, 2021, 131(7): e139299. DOI: 10.1172/jci139299.
[43]
Iwasa T, Afroz S, Inoue M, et al. IL-10 and CXCL2 in trigeminal ganglia in neuropathic pain[J]. Neurosci Lett, 2019, 703: 132-138. DOI: 10.1016/j.neulet.2019.03.031.
[44]
Duffy SS, Keating BA, Perera CJ, et al. Regulatory T cells and their derived cytokine, interleukin-35, reduce pain in experimental autoimmune encephalomyelitis[J]. J Neurosci, 2019, 39(12): 2326-2346. DOI: 10.1523/jneurosci.1815-18.2019.
[45]
Lees JG, Duffy SS, Perera CJ, et al. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury[J]. Cytokine, 2015, 71(2): 207-214. DOI: 10.1016/j.cyto.2014.10.028.
[46]
Hu R, Zhang J, Liu X, et al. Low-dose interleukin-2 and regulatory T cell treatments attenuate punctate and dynamic mechanical allodynia in a mouse model of sciatic nerve injury[J]. J Pain Res, 2021, 14: 893-906. DOI: 10.2147/jpr.S301343.
[47]
陈业煌,陈恺钦,薛亮,等.改良大鼠挫伤型脊髓损伤模型的制备与评估[J].中华神经创伤外科电子杂志, 2023, 9(6): 325-332. DOI: 10.3877/cma.j.issn.2095-9141.2023.06.002.
[48]
Kuhn JA, Vainchtein ID, Braz J, et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice[J]. Elife, 2021, 10: e69056. DOI: 10.7554/eLife.69056.
[49]
Coraggio V, Guida F, Boccella S, et al. Neuroimmune-driven neuropathic pain establishment: a focus on gender differences[J]. Int J Mol Sci, 2018, 19(1): 281. DOI: 10.3390/ijms19010281.
[50]
Kiguchi N, Kobayashi D, Saika F, et al. Pharmacological regulation of neuropathic pain driven by inflammatory macrophages [J]. Int J Mol Sci, 2017, 18(11): 2296. DOI: 10.3390/ijms18112296.
[51]
Wu T, Wang L, Jian C, et al. Regulatory T cell-derived exosome mediated macrophages polarization for osteogenic differentiation in fracture repair[J]. J Control Release, 2024, 369: 266-282. DOI: 10.1016/j.jconrel.2024.03.028.
[52]
Chen H, Jiang L, Zhang D, et al. Exploring the correlation between the regulation of macrophages by regulatory T cells and peripheral neuropathic pain[J]. Front Neurosci, 2022, 16: 813751. DOI: 10.3389/fnins.2022.813751.
[53]
Wang R, Liang Q, Zhang Q, et al. Ccl2-induced regulatory T cells balance inflammation through macrophage polarization during liver reconstitution[J]. Adv Sci (Weinh), 2024, 11(45): e2403849. DOI: 10.1002/advs.202403849.
[54]
Dong S, Hiam-Galvez KJ, Mowery CT, et al. The effect of low-dose IL-2 and treg adoptive cell therapy in patients with type 1 diabetes[J]. JCI Insight, 2021, 6(18): e147474. DOI: 10.1172/jci.insight.147474.
[55]
Alhosseini MN, Ebadi P, Karimi MH, et al. Therapy with regulatory T-cell infusion in autoimmune diseases and organ transplantation: a review of the strengths and limitations[J]. Transpl Immunol, 2024, 85: 102069. DOI: 10.1016/j.trim.2024.102069.
[56]
Russo MA, Fiore NT, van Vreden C, et al. Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome[J]. J Neuroinflammation, 2019, 16(1): 63. DOI: 10.1186/s12974-019-1449-9.
[57]
Galvin DA, C M. The role of T-lymphocytes in neuropathic pain initiation, development of chronicity and treatment[J]. Brain Behav Immun Health, 2021, 18: 100371. DOI: 10.1016/j.bbih.2021.100371.
[58]
Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3): 158-172. DOI: 10.1038/s41577-019-0232-6.
[59]
Shi L, Sun Z, Su W, et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke[J]. Immunity, 2021, 54(7): 1527-1542. e1528. DOI: 10.1016/j.immuni.2021.04.022.
[60]
Xie F, Shen B, Luo Y, et al. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6[J]. Mol Neurodegener, 2024, 19(1): 80. DOI: 10.1186/s13024-024-00770-4.
[1] 任玲, 但红霞. 沙利度胺及其衍生物在人类免疫缺陷病毒感染相关疾病中的应用[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(06): 321-326.
[2] 陈观梅, 左璇, 廖宝林. 慢性乙型肝炎新型免疫治疗研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 7-10.
[3] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[4] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[5] 向青, 龚道辉, 赵才林, 张硕辛, 秦蘅, 刘禹. 巨噬细胞参与免疫调节机制在肺动脉高压中的影响及相关纳米材料的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1027-1030.
[6] 刘沐芸, 侯凯翔, 韩奇鹏, 崔诗慧, 魏殿华, 符业优, 丁关焱, 从丽萍, 梁晓, 安刚. 脂肪与骨髓间充质干细胞的免疫调节作用及协同治疗潜力分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 220-228.
[7] 赵敏廷, 张郭, 孙家明. 调节性T细胞与组织修复再生[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 51-55.
[8] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[9] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[10] 葛程, 石燕红, 陶勇. 调节性T细胞外泌体对血管内皮细胞保护作用的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 155-160.
[11] 刘佳鑫, 杨文强, 王琦, 于炎冰, 张黎. 周围神经电刺激在周围神经病理性疼痛治疗中的应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 85-95.
[12] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[13] 伍诗烨, 黄红叶, 陈水金, 林志刚. 推拿对神经病理性疼痛大鼠脊髓背角中IL-1β、IL-6及c-Fos表达的影响[J/OL]. 中华针灸电子杂志, 2024, 13(03): 96-101.
[14] 陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 133-137.
[15] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?