| [1] |
Liu J, Tao W, Wang Z, et al. Radiomics-based prediction of hemorrhage expansion among patients with thrombolysis/thrombectomy related-hemorrhagic transformation using machine learning[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211060029. DOI: 10.1177/17562864211060029.
|
| [2] |
Wang R, Zeng J, Wang F, et al. Risk factors of hemorrhagic transformation after intravenous thrombolysis with rt-PA in acute cerebral infarction[J]. QJM, 2019, 112(5): 323-326. DOI: 10.1093/qjmed/hcy292.
|
| [3] |
|
| [4] |
Liu X, Zhang J, Tian C, et al. The relationship of leukoaraiosis, haemorrhagic transformation and prognosis at 3 months after intravenous thrombolysis in elderly patients aged ≥ 60 years with acute cerebral infarction[J]. Neurol Sci, 2020, 41(11): 3195-3200. DOI: 10.1007/s10072-020-04398-2.
|
| [5] |
Ren H, Song H, Wang J, et al. A clinical-radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning: a multicenter study[J]. Insights Imaging, 2023, 14(1): 52. DOI: 10.1186/s13244-023-01399-5.
|
| [6] |
|
| [7] |
Heo J, Sim Y, Kim BM, et al. Radiomics using non-contrast ct to predict hemorrhagic transformation risk in stroke patients undergoing revascularization[J]. Eur Radiol, 2024, 34(9): 6005-6015. DOI: 10.1007/s00330-024-10618-6.
|
| [8] |
Tomaszewska-Lampart I, Wiącek M, Bartosik-Psujek H. Risk factors for infarct growth and haemorrhagic or oedematous complications after endovascular treatment-a literature review[J]. Neurol Neurochir Pol, 2022, 56(5): 389-398. DOI: 10.5603/PJNNS.a2022.0056.
|
| [9] |
Sun T, Yu HY, Zhan CH, et al. Non-contrast CT radiomics-clinical machine learning model for futile recanalization after endovascular treatment in anterior circulation acute ischemic stroke[J]. BMC Med Imaging, 2024, 24(1): 178. DOI: 10.1186/s12880-024-01365-7.
|
| [10] |
Zhang Y, Xie G, Zhang L, et al. Constructing machine learning models based on non-contrast CT radiomics to predict hemorrhagic transformation after stoke: a two-center study[J]. Front Neurol, 2024, 15: 1413795. DOI: 10.3389/fneur.2024.1413795.
|
| [11] |
Ma Y, Xu DY, Liu Q, et al. Nomogram prediction model for the risk of intracranial hemorrhagic transformation after intravenous thrombolysis in patients with acute ischemic stroke[J]. Front Neurol, 2024, 15: 1361035. DOI: 10.3389/fneur.2024.1361035.
|
| [12] |
Klingbeil KD, Koch S, Dave KR. Potential link between post-acute ischemic stroke exposure to hypoglycemia and hemorrhagic transformation[J]. Int J Stroke, 2020, 15(5): 477-483. DOI: 10.1177/1747493017743797.
|
| [13] |
Hao Y, Zhou H, Pan C, et al. Prediction factors and clinical significance of different types of hemorrhagic transformation after intravenous thrombolysis[J]. Eur J Med Res, 2023, 28(1): 509. DOI: 10.1186/s40001-023-01503-x.
|
| [14] |
|
| [15] |
You S, Wang Y, Wang X, et al. Twenty-four-hour post-thrombolysis NIHSS score as the strongest prognostic predictor after acute ischemic stroke: ENCHANTED study[J]. J Am Heart Assoc, 2024, 13(18): e036109. DOI: 10.1161/jaha.124.036109.
|
| [16] |
|
| [17] |
Xu Q, Zhu Y, Zhang X, et al. Clinical features and flair radiomics nomogram for predicting functional outcomes after thrombolysis in ischaemic stroke[J]. Front Neurosci, 2023, 17: 1063391. DOI: 10.3389/fnins.2023.1063391.
|
| [18] |
Gu Y, Xu C, Zhang Z, et al. Association between infarct location and haemorrhagic transformation of acute ischaemic stroke after intravenous thrombolysis[J]. Clin Radiol, 2024, 79(3): e401-e407. DOI: 10.1016/j.crad.2023.11.024.
|
| [19] |
Wen X, Xiao Y, Hu X, et al. Prediction of hemorrhagic transformation via pre-treatment CT radiomics in acute ischemic stroke patients receiving endovascular therapy[J]. Br J Radiol, 2023, 96(1147): 20220439. DOI: 10.1259/bjr.20220439.
|
| [20] |
Huang YH, Chen ZJ, Chen YF, et al. The value of ct-based radiomics in predicting hemorrhagic transformation in acute ischemic stroke patients without recanalization therapy[J]. Front Neurol, 2024, 15: 1255621. DOI: 10.3389/fneur.2024.1255621.
|
| [21] |
安鹏.基于临床影像资料对子痫的预测研究[D].南京:南京中医药大学, 2024.
|
| [22] |
Shi L, Rong Y, Daly M, et al. Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer[J]. Phys Med Biol, 2020, 65(1): 015009. DOI: 10.1088/1361-6560/ab3247.
|
| [23] |
Meng Y, Wang H, Wu C, et al. Prediction model of hemorrhage transformation in patient with acute ischemic stroke based on multiparametric MRI radiomics and machine learning[J]. Brain Sci, 2022, 12(7): 858. DOI: 10.3390/brainsci12070858.
|
| [24] |
|
| [25] |
Zhai D, Wu Y, Cui M, et al. Combinations of clinical factors, CT signs, and radiomics for differentiating high-density areas after mechanical thrombectomy in patients with acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2025, 46(1): 66-74. DOI: 10.3174/ajnr.A8434.
|
| [26] |
Jiang YL, Zhao QS, Li A, et al. Advanced machine learning models for predicting post-thrombolysis hemorrhagic transformation in acute ischemic stroke patients: a systematic review and meta-analysis[J]. Clin Appl Thromb Hemost, 2024, 30: 10760296241279800. DOI: 10.1177/10760296241279800.
|