切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-123X.2023.04.001

临床研究

利用多模态医学数据和机器学习构建脑出血预后预测模型的研究
陈显金, 吴芹芹, 何长春, 张庆华()   
  1. 518000 深圳,华中科技大学协和深圳医院神经外科
  • 收稿日期:2022-06-28 出版日期:2023-08-15
  • 通信作者: 张庆华

Research on constructing prognosis prediction model of intracerebral hemorrhage using multimodal medical data and machine learning

Xianjin Chen, Qinqin Wu, Changchun He, Qinghua Zhang()   

  1. Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China
  • Received:2022-06-28 Published:2023-08-15
  • Corresponding author: Qinghua Zhang
  • Supported by:
    The Municipal Science & Technology Innovation Commission Foundation of Shenzhen(Z2021N059)
引用本文:

陈显金, 吴芹芹, 何长春, 张庆华. 利用多模态医学数据和机器学习构建脑出血预后预测模型的研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 193-198.

Xianjin Chen, Qinqin Wu, Changchun He, Qinghua Zhang. Research on constructing prognosis prediction model of intracerebral hemorrhage using multimodal medical data and machine learning[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(04): 193-198.

目的

利用多模态医学数据和机器学习构建脑出血预后预测的模型,并探讨其预测价值。

方法

回顾性分析华中科技大学协和深圳医院神经外科2020年1~12月收治的98例脑出血患者的临床资料及北京协和医院建立的全国多中心颅内出血数据库2020年1~12月纳入的302例脑出血患者的临床资料。构建脑出血影像学数据库,提取影像组学、临床相关因素标签,构建预测患者预后的模型。另选取华中科技大学协和深圳医院神经外科2021年1~12月收治的100例脑出血患者进行模型前瞻性验证。

结果

400例患者预后不良的发生率为19.00%,单因素及多因素分析结果显示GCS评分、收缩压、舒张压、血糖、血肿体积、周围水肿体积、纤维蛋白原均是预后的影响因素(P<0.05)。自编码影像特征-临床数据模型预测脑出血患者预后的灵敏度、特异度、准确度、曲线下面积(AUC)[95%置信区间(95%CI)]分别为100.00%、99.38%、99.50%、0.994(0.935~0.998),均高于自编码影像特征模型及传统模型,且自编码影像特征模型均高于传统模型(P<0.05)。经验证,自编码影像特征-临床数据模型预测脑出血患者预后的灵敏度、特异度、准确度、AUC(95%CI)分别为100.00%、97.47%、98.00%、0.974(0.922~0.996)。

结论

利用多模态医学数据和机器学习构建的自编码影像特征-临床数据模型预测脑出血预后的效能高。

Objective

To construct a predictive model of cerebral hemorrhage prognosis prognosis using multimodal medical data and machine learning, and to explore its predictive value.

Methods

A total of 400 cerebral hemorrhage data was retrospective analyzed, included 98 cerebral hemorrhage patients in the Neurology Department of Peking Union Medical College Shenzhen Hospital, Huazhong University of Science and Technology from January to December 2020 and 302 cerebral hemorrhage patients from the National Multicenter Intracranial Hemorrhage Database established by Peking Union Medical College Hospital from January to December 2020 to build an imaging database of cerebral hemorrhage, extract the labels of imaging omics and clinical related factors, and build a model to predict patients' prognosis. Another 100 patients with intracerebral hemorrhage in the Neurology Department of Peking Union Medical College Shenzhen Hospital, Huazhong University of Science and Technology from January to December 2021 were selected for prospective verification of the model.

Results

The incidence of poor prognosis in 400 patients was 19.00%. The results of univariate analysis and multivariate logistic regression analysis showed that GCS score, systolic blood pressure, diastolic blood pressure, blood glucose, hematoma volume, peripheral edema volume, fibrinogen were all the influencing factors of poor prognosis (P<0.05). The sensitivity, specificity, accuracy and area under curve (AUC) [95% confidence interval (95%CI)] of self coding image feature clinical data model for predicting prognosis in patients with cerebral hemorrhage were 100.00%, 99.38%, 99.50% and 0.994 (0.935-0.998) respectively, which were higher than those of self coding image feature model and traditional model (P<0.05), and those of the self coding image feature model were higher than those of traditional model (P<0.05). After verification, the sensitivity, specificity, accuracy and AUC (95%CI) of the self coded image feature clinical data model for predicting prognosis in patients with cerebral hemorrhage were 100.00%, 97.47%, 98.00% and 0.974 (0.922-0.996) respectively.

Conclusion

The self coding image feature clinical data model based on multi-modal medical data and machine learning has high efficiency in predicting cerebral hemorrhage prognosis.

表1 预后不良和良好患者的一般资料比较
Tab.1 Comparison of general information between patients with poor and good prognosis
图1 危险因素方程预测患者预后不良的ROC验证
Fig.1 ROC validation of the risk factor equation for predicting poor patient prognosis
表2 影响脑出血患者预后的多因素Logistic回归分析
Tab.2 Multivariate Logistic regression analysis on the prognosis of patients with cerebral hemorrhage
图2 各种模型对脑出血患者预后的预测ROC曲线
Fig.2 Prediction receiver operating characteristic of prognosis in patients with cerebral hemorrhage by various models
表3 各种模型对脑出血患者预后的预测价值分析
Tab.3 Analysis of the predictive value of various models for prognosis in patients with cerebral hemorrhage
图3 自编码影像特征-临床数据模型预测脑出血患者ROC曲线
Fig.3 Receiver operating characteristic of patients with cerebral hemorrhage predicted by self coding image characteristics clinical data model
[1]
杨帆,杨国军,杨哲.北京地区3139例首发脑出血患者流行特征及预后情况分析[J].华南预防医学, 2022, 48(1): 46-54; 46-49, 54. DOI: 10.12183/j.scjpm.2022.0046.
[2]
中华医学会神经外科学分会,中国医师协会急诊医师分会,中华医学会神经病学分会脑血管病学组,等.高血压性脑出血中国多学科诊治指南[J].中国急救医学, 2020, 40(8): 689-702. DOI: 10.3969/j.issn.1002-1949.2020.08.001.
[3]
车鹏,黄可,胡俊,等. S-100β蛋白和NES对急诊脑出血患者预后的预测价值[J].重庆医学, 2021, 50(5): 757-761. DOI: 10.3969/j.issn.1671-8348.2021.05.009.
[4]
Rao B, Zohrabian V, Cedeno P, et al. Utility of artificial intelligence tool as a prospective radiology peer reviewer - detection of unreported intracranial hemorrhage[J]. Acad Radiol, 2021, 28(1): 85-93. DOI: 10.1016/j.acra.2020.01.035.
[5]
赖建东,王宁,罗坤,等.基于深度学习计算机辅助诊断系统测量脑出血量[J].中国医学影像技术, 2020, 36(12): 1781-1785. DOI: 10.13929/j.issn.1003-3289.2020.12.005.
[6]
中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国脑出血诊治指南(2019)[J].中华神经科杂志, 2019, 52(12): 994-1005. DOI: 10.3760/cma.j.issn.1006-7876.2019.12.003.
[7]
Boase K, Machamer J, Temkin NR, et al. Central curation of Glasgow outcome scale-extended data: lessons learned from TRACK-TBI[J]. J Neurotrauma, 2021, 38(17): 2419-2434. DOI: 10.1089/neu.2020.7528.
[8]
Abulhasan YB, Ortiz Jimenez J, Teitelbaum J, et al. Milrinone for refractory cerebral vasospasm with delayed cerebral ischemia[J]. J Neurosurg, 2020, 134(3): 971-982. DOI: 10.3171/2020.1.JNS193107.
[9]
Kase CS, Hanley DF. Intracerebral hemorrhage: advances in emergency care[J]. Neurol Clin, 2021, 39(2): 405-418. DOI: 10.1016/j.ncl.2021.02.002.
[10]
Derraz I, Cagnazzo F, Gaillard N, et al. Microbleeds, cerebral hemorrhage, and functional outcome after endovascular thrombectomy[J]. Neurology, 2021, 96(13): e1724-e1731. DOI: 10.1212/WNL.0000000000011566.
[11]
滕兆平,刘卫国,杨小旺,等.中性粒细胞与淋巴细胞比值对急性脑出血病人短期预后不良的预测价值[J].中西医结合心脑血管病杂志, 2020, 18(14): 2320-2324. DOI: 10.12102/j.issn.1672-1349.2020.14.033.
[12]
Park HK, Lee JS, Kim BJ, et al. Cilostazol versus aspirin in ischemic stroke with cerebral microbleeds versus prior intracerebral hemorrhage[J]. Int J Stroke, 2021, 16(9): 1019-1030. DOI: 10.1177/1747493020941273.
[13]
Ma L, Zhang S, Li Z, et al. Morbidity after symptomatic hemorrhage of cerebral cavernous malformation: a nomogram approach to risk assessment[J]. Stroke, 2020, 51(10): 2997-3006. DOI: 10.1161/STROKEAHA.120.029942.
[14]
唐卉,辜蕊,周嫱,等.自发性脑出血长期预后因素分析以及预测评分量表的建立[J].四川医学, 2021, 42(9): 913-918. DOI: 10.16252/j.cnki.issn1004-0501-2021.09.011.
[15]
Pyun JM, Ryoo N, Park YH, et al. Fibrinogen levels and cognitive profile differences in patients with mild cognitive impairment[J]. Dement Geriatr Cogn Disord, 2020, 49(5): 489-496. DOI: 10.1159/000510420.
[16]
吴蓉蓉,鲁珊珊,张久楼,等.基于机器学习预测超时间窗急性前循环大血管闭塞患者机械取栓预后的研究[J].临床放射学杂志, 2022, 41(3): 404-409. DOI: 10.13437/j.cnki.jcr.2022.03.005.
[17]
姜荣涛,戚世乐,吴静,等.基于多模态脑影像和机器学习算法的个体行为预测研究现状及未来趋势[J].中华诊断学电子杂志, 2021, 9(3): 145-148. DOI: 10.3877/cma.j.issn.2095-655X.2021.03.001.
[1] 陈翠萍, 李佩君, 杜景榕, 谢青梅, 许一宁, 卓姝妤, 李晓芳. 互联网联合上门护理在老年全髋关节置换术后的应用效果[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 676-681.
[2] 李萍, 陈慧, 庄君龙. 快速康复外科在机器人辅助腹腔镜膀胱切除回肠造口术中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 249-253.
[3] 刘欣茹, 杜鹃, 代健健, 辛秀娟, 高梨梨. SBAR沟通模式在急诊腹股沟疝手术患者中的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 451-455.
[4] 孙红燕, 李娟. 造口旁疝患者生活质量的影响因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(03): 273-276.
[5] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[6] 马锦芳, 何正光, 郑劲平. 盐酸氨溴索雾化吸入治疗慢性阻塞性肺疾病黏痰症患者的疗效和安全性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 568-574.
[7] 陶银花, 张红杰, 王亚岚, 陈莲, 张珺. 间歇式气压治疗预防肺癌化疗下肢深静脉血栓的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 605-608.
[8] 林建琴, 孔令敏, 陆银凤, 陈勇, 金凤, 叶磊, 陈方梅. PERMA模式对肺癌患者治疗获益感及生活质量的影响分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 634-638.
[9] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[10] 王永楠, 汤畅通, 殷杰, 谭溢涛. 微创钻孔引流术与神经内镜血肿清除术治疗临界量基底节脑出血的效果对比分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 286-292.
[11] 张志超, 李陈, 韩惠, 周夏, 洪家康. 经额平行白质纤维束立体定向血肿穿刺引流术与神经内镜下血肿清除术治疗基底节脑出血的临床对比分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 299-303.
[12] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[13] 刘国龙, 王鹏, 谭超, 杨辉, 彭菊红. 神经外科机器人辅助双通道颅内血肿清除术治疗高血压性脑出血[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 254-256.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 穆巴拉克·伊力哈, 徐霁华, 鲁明. 急性轻型卒中微量脑出血误诊病例的临床特点及影像学表现分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 441-445.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?