[1] |
Brem SS, Bierman PJ, Brem H, et al. Central nervous system cancers[J]. J Natl Compr Canc Netw, 2011, 9(4): 352-400.
|
[2] |
Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions[J]. Neuro Oncol, 2020, 22(8): 1073-1113.
|
[3] |
Stukel JM, Caplan MR. Targeted drug delivery for treatment and imaging of glioblastoma multiforme[J]. Expert Opin Drug Deliv, 2009, 6(7): 705-718.
|
[4] |
Schinkel AH. P-glycoprotein, a gatekeeper in the blood-brain barrier[J]. Adv Drug Deliv Rev, 1999, 36(2-3): 179-194.
|
[5] |
Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications[J]. Cell Mol Neurobiol, 2000, 20(2): 217-230.
|
[6] |
Neuwelt EA. Mechanisms of disease: the blood-brain barrier[J]. Neurosurgery, 2004, 54(1): 131-140; discussion 141-132.
|
[7] |
Rapoport SI. Blood-brain barrier in physiology and medicine[M]. New York: Raven press, 1976.
|
[8] |
Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs[J]. J Clin Invest, 1996, 97(11): 2517-2524.
|
[9] |
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41.
|
[10] |
Sarkaria JN, Hu LS, Parney IF, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data[J]. Neuro Oncol, 2018, 20(2): 184-191.
|
[11] |
Leggas M, Adachi M, Scheffer GL, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy[J]. Mol Cell Biol, 2004, 24(17): 7612-7621.
|
[12] |
Breedveld P, Pluim D, Cipriani G, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients [J]. Cancer Res, 2005, 65(7): 2577-2582.
|
[13] |
Bradbury M. The concept of a blood-brain barrier[M]. New York: John Wiley & Sons, 1979.
|
[14] |
Hall WA, Sherr GT. Convection-enhanced delivery of targeted toxins for malignant glioma[J]. Expert Opin Drug Deliv, 2006, 3(3): 371-377.
|
[15] |
Vavra M, Ali MJ, Kang EW, et al. Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery[J]. Neuro Oncol, 2004, 6(2): 104-112.
|
[16] |
Jain RK. Transport of molecules, particles, and cells in solid tumors[J]. Annu Rev Biomed Eng, 1999, 1(1): 241-263.
|
[17] |
Ali MJ, Navalitloha Y, Vavra MW, et al. Isolation of drug delivery from drug effect: problems of optimizing drug delivery parameters[J]. Neuro Oncol, 2006, 8(2): 109-118.
|
[18] |
Jain RK. Barriers to drug delivery in solid tumors[J]. Sci Am, 1994, 271(1): 58-65.
|
[19] |
Rockwell S. Use of hypoxia-directed drugs in the therapy of solid tumors[J]. Semin Oncol, 1992, 19(4 Suppl 11): 29-40.
|
[20] |
Johanson CE, Jones HC. Promising vistas in hydrocephalus and cerebrospinal fluid research[J]. Trends Neurosci, 2001, 24(11): 631-632.
|
[21] |
Rautioa J, Chikhale PJ. Drug delivery systems for brain tumor therapy[J]. Curr Pharm Des, 2004, 10(12): 1341-1353.
|
[22] |
Ghersi-Egea JF, Leininger-Muller B, Cecchelli R, et al. Blood-brain interfaces: relevance to cerebral drug metabolism[J]. Toxicol Lett, 1995, 82-83: 645-653.
|
[23] |
Pardridge WM. Recent advances in blood-brain barrier transport[J]. Annu Rev Pharmacol Toxicol, 1988, 28: 25-39.
|
[24] |
Brem H, Walter KA, Tamargo RJ, et al. Drug delivery to the brain[M]. New York: John Wiley & Sons, 1994: 117-139.
|
[25] |
Sinkula AA, Yalkowsky SH. Rationale for design of biologically reversible drug derivatives: prodrugs[J]. J Pharm Sci, 1975, 64(2): 181-210.
|
[26] |
Stella VJ, Charman WN, Naringrekar VH. Prodrugs. Do they have advantages in clinical practice?[J]. Drugs, 1985, 29(5): 455-473.
|
[27] |
Greig NH, Genka S, Daly EM, et al. Physicochemical and pharmacokinetic parameters of seven lipophilic chlorambucil esters designed for brain penetration[J]. Cancer Chemother Pharmacol, 1990, 25(5): 311-319.
|
[28] |
Genka S, Deutsch J, Shetty UH, et al. Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil[J]. Clin Exp Metastasis, 1993, 11(2): 131-140.
|
[29] |
Aboody KS, Najbauer J, Metz MZ, et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies[J]. Sci Transl Med, 2013, 5(184): 184ra159.
|
[30] |
Doloff JC, Su T, Waxman DJ. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+[J]. BMC Cancer, 2010, 10: 487.
|
[31] |
Khan Z, Knecht W, Willer M, et al. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy[J]. Neuro Oncol, 2010, 12(6): 549-558.
|
[32] |
Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy[J]. Gene Ther, 2008, 15(10): 739-752.
|
[33] |
Dhanda DS, Frey W, Leopold D, et al. Approaches for drug deposition in the human olfactory epithelium[J]. Drug Deliv Technol, 2005, 5(4): 64-72.
|
[34] |
Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration[J]. Neuroscience, 2004, 127(2): 481-496.
|
[35] |
Hashizume R, Ozawa T, Gryaznov SM, et al. New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163[J]. Neuro Oncol, 2008, 10(2): 112-120.
|
[36] |
van Woensel M, Wauthoz N, Rosiere R, et al. Formulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?[J]. Cancers (Basel), 2013, 5(3): 1020-1048.
|
[37] |
Williams PC, Henner WD, Roman-Goldstein S, et al. Toxicity and efficacy of carboplatin and etoposide in conjunction with disruption of the blood-brain tumor barrier in the treatment of intracranial neoplasms[J]. Neurosurgery, 1995, 37(1): 17-28.
|
[38] |
Neuwelt EA, Frenkel EP, Rapoport S, et al. Effect of osmotic blood-brain barrier disruption on methotrexate pharmacokinetics in the dog[J]. Neurosurgery, 1980, 7(1): 36-43.
|
[39] |
Cloughesy TF, Black KL. Pharmacological blood-brain barrier modification for selective drug delivery[J]. J Neurooncol, 1995, 26(2): 125-132.
|
[40] |
Bartus RT, Elliott PJ, Dean RL, et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7[J]. Exp Neurol, 1996, 142(1): 14-28.
|
[41] |
Ford J, Osborn C, Barton T, et al. A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma[J]. Eur J Cancer, 1998, 34(11): 1807-1811.
|
[42] |
Bidros DS, Vogelbaum MA. Novel drug delivery strategies in neuro-oncology[J]. Neurotherapeutics, 2009, 6(3): 539-546.
|
[43] |
Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits[J]. Radiology, 2001, 220(3): 640-646.
|
[44] |
Clement GT, Hynynen K. A non-invasive method for focusing ultrasound through the human skull[J]. Phys Med Biol, 2002, 47(8): 1219-1236.
|
[45] |
Todd N, Angolano C, Ferran C, et al. Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood-brain barrier[J]. J Control Release, 2020, 324: 450-459.
|
[46] |
Sinharay S, Tu TW, Kovacs ZI, et al. In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study[J]. J Neuroinflammation, 2019, 16(1): 155.
|
[47] |
Kovacs ZI, Burks SR, Frank JA. Focused ultrasound with microbubbles induces sterile inflammatory response proportional to the blood brain barrier opening: attention to experimental conditions[J]. Theranostics, 2018, 8(8): 2245-2248.
|
[48] |
Westphal M, Ram Z, Riddle V, et al. Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial[J]. Acta Neurochir(Wien), 2006, 148(3): 269-275.
|
[49] |
DiMeco F, Li KW, Tyler BM, et al. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats[J]. J Neurosurg, 2002, 97(5): 1173-1178.
|
[50] |
Osami K, Yasuhiko T, Yoshihiro M, et al. Local chemotherapy with slowly-releasing anticancer drug-polymers for malignant brain tumors[J]. J Control Release, 1994, 32(1): 1-8.
|
[51] |
Menei P, Venier MC, Gamelin E, et al. Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of glioblastoma: a pilot study[J]. Cancer, 1999, 86(2): 325-330.
|
[52] |
Walter KA, Cahan MA, Gur A, et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma[J]. Cancer Res, 1994, 54(8): 2207-2212.
|
[53] |
Watts MC, Lesniak MS, Burke M, et al. Controlled release of adriamycin in the treatment of malignant glioma[C]. The American Association of Neurological Surgeons Annual Meeting, Denver, CO, 1997.
|
[54] |
Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium[J]. Brain Res, 1995, 680(1-2): 196-206.
|
[55] |
Pollina J, Plunkett RJ, Ciesielski MJ, et al. Intratumoral infusion of topotecan prolongs survival in the nude rat intracranial U87 human glioma model[J]. J Neurooncol, 1998, 39(3): 217-225.
|
[56] |
Varenika V, Dickinson P, Bringas J, et al. Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery[J]. J Neurosurg, 2008, 109(5): 874-880.
|
[57] |
Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain[J]. Proc Natl Acad Sci USA, 1994, 91(6): 2076-2080.
|
[58] |
Walter KA, Tamargo RJ, Olivi A, et al. Intratumoral chemotherapy[J]. Neurosurgery, 1995, 37(6): 1129-1145.
|
[59] |
Blasberg RG. Methotrexate, cytosine arabinoside, and BCNU concentration in brain after ventriculocisternal perfusion[J]. Cancer Treat Rep, 1977, 61(4): 625-631.
|
[60] |
Yamada K, Ushio Y, Hayakawa T, et al. Distribution of radiolabeled1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitros ourea hydrochloride in rat brain tumor: intraarterial versus intravenous administration[J]. Cancer Res, 1987, 47(8): 2123-2128.
|
[61] |
Savaraj N, Lu K, Feun LG, et al. Comparison of CNS penetration, tissue distribution, and pharmacology of VP 16-213 by intracarotid and intravenous administration in dogs[J]. Cancer Invest, 1987, 5(1): 11-16.
|
[62] |
Nakagawa H, Fujita T, Izumimoto S, et al. Cis-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. II: clinical effects[J]. J Neurooncol, 1993, 16(1): 69-76.
|
[63] |
Dickinson PJ, LeCouteur RA, Higgins RJ, et al. Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation[J]. J Neurosurg, 2008, 108(5): 989-998.
|
[64] |
Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes[J]. Proc Natl Acad Sci USA, 1996, 93(24): 14164-14169.
|
[65] |
Krishnamoorthy B, Karanam V, Chellan VR, et al. Polymersomes as an effective drug delivery system for glioma-a review[J]. J Drug Target, 2014, 22(6): 469-477.
|
[66] |
Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers[J]. Biomaterials, 2007, 28(33): 4947-4967.
|
[67] |
Corem-Salkmon E, Ram Z, Daniels D, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles[J]. Int J Nanomedicine, 2011, 6: 1595-1602.
|
[68] |
Hassan EE, Gallo JM. Targeting anticancer drugs to the brain. I: enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres[J]. J Drug Target, 1993, 1(1): 7-14.
|