[1] |
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults[J]. Circulation, 2017, 135(8): 759-771. DOI: 10.1161/CIRCULATIONAHA.116.025250.
|
[2] |
Park SE, Kim YR, Kim YY. Immediate effects of scapular stabilizing exercise in chronic stroke patient with winging and elevated scapula: a case study[J]. J Phys Ther Sci, 2018, 30(1): 190-193. DOI: 10.1589/jpts.30.190.
|
[3] |
Rose T, Nam CS, Chen KB. Immersion of virtual reality for rehabilitation-review[J]. Appl Ergon, 2018, 69: 153-161. DOI: 10.1016/j.apergo.2018.01.009.
|
[4] |
|
[5] |
|
[6] |
Turgut E, Duzgun I, Baltaci G. Effects of scapular stabilization exercise training on scapular kinematics, disability, and pain in subacromial impingement: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2017, 98(10): 1915-1923.e3. DOI: 10.1016/j.apmr.2017.05.023.
|
[7] |
|
[8] |
Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation[J]. Cochrane Database Syst Rev, 2017, 11(11): CD008349. DOI: 10.1002/14651858.CD008349.pub4.
|
[9] |
Lehmann I, Baer G, Schuster-Amft C. Experience of an upper limb training program with a non-immersive virtual reality system in patients after stroke: a qualitative study[J]. Physiotherapy, 2020, 107: 317-326. DOI: 10.1016/j.physio.2017.03.001.
|
[10] |
Goncalves MG, Piva MFL, Marques CLS, et al. Effects of virtual reality therapy on upper limb function after stroke and the role of neuroimaging as a predictor of a better response[J]. Arq Neuropsiquiatr, 2018, 76(10): 654-662. DOI: 10.1590/0004-282X20180104.
|
[11] |
Vourvopoulos A, Jorge C, Abreu R, et al. Efficacy and brain imaging correlates of an immersive motor imagery BCI-driven VR system for upper limb motor rehabilitation: a clinical case report[J]. Front Hum Neurosci, 2019, 13: 244. DOI: 10.3389/fnhum.2019.00244.
|
[12] |
Lee S, Cha H. The effect of clinical application of transcranial direct current stimulation combined with non-immersive virtual reality rehabilitation in stroke patients[J]. Technol Health Care, 2022, 30(1): 117-127. DOI: 10.3233/THC-212991.
|
[13] |
Telles CR, Roy A, Ajmal MR, et al. Correction: the impact of COVID-19 management policies tailored to airborne SARS-CoV-2 transmission: policy analysis[J]. JMIR Public Health Surveill, 2021, 7(5): e30007. DOI: 10.2196/30007.
|
[14] |
Perez-Marcos D, Chevalley O, Schmidlin T, et al. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study[J]. J Neuroeng Rehabil, 2017, 14(1): 119. DOI: 10.1186/s12984-017-0328-9.
|
[15] |
Patel J, Fluet G, Qiu Q, et al. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods post-stroke: a feasibility study[J]. J Neuroeng Rehabil, 2019, 16(1): 92. DOI: 10.1186/s12984-019-0563-3.
|
[16] |
Ain QU, Khan S, Ilyas S, et al. Additional effects of Xbox kinect training on upper limb function in chronic stroke patients: a randomized control trial[J]. Healthcare (Basel), 2021, 9(3): 242. DOI: 10.3390/healthcare9030242.
|
[17] |
Miclaus R, Roman N, Caloian S, et al. Non-immersive virtual reality for post-stroke upper extremity rehabilitation: a small cohort randomized trial[J]. Brain Sci, 2020, 10(9): 655. DOI: 10.3390/brainsci10090655.
|
[18] |
Maenza C, Wagstaff DA, Varghese R, et al. Remedial training of the less-impaired arm in chronic stroke survivors with moderate to severe upper-extremity paresis improves functional independence: a pilot study[J]. Front Hum Neurosci, 2021, 15: 645714. DOI: 10.3389/fnhum.2021.645714.
|
[19] |
Keshner EA, Weiss PT, Geifman D, et al. Tracking the evolution of virtual reality applications to rehabilitation as a field of study[J]. J Neuroeng Rehabil, 2019, 16(1): 76. DOI: 10.1186/s12984-019-0552-6.
|
[20] |
Linder SM, Rosenfeldt AB, Dey T, et al. Forced aerobic exercise preceding task practice improves motor recovery poststroke[J]. Am J Occup Ther, 2017, 71(2): 7102290020p1-7102290020p9. DOI: 10.5014/ajot.2017.020297.
|
[21] |
Karamians R, Proffitt R, Kline D, et al. Effectiveness of virtual reality- and gaming-based interventions for upper extremity rehabilitation poststroke: a meta-analysis[J]. Arch Phys Med Rehabil, 2020, 101(5): 885-896. DOI: 10.1016/j.apmr.2019.10.195.
|
[22] |
Ma SR, Yang BI. The effects of scapula setting intervention on the ADL and gait in the stroke patients[J]. Res J Pharm Technol, 2018, 11(7): 2792-2796. DOI: 10.5958/0974-360x.2018.00515.2.
|
[23] |
Park SJ, Oh S. Changes in gait performance in stroke patients after taping with scapular setting exercise[J]. Healthcare (Basel), 2020, 8(2): 128. DOI: 10.3390/healthcare8020128.
|
[24] |
Dell'Uomo D, Morone G, Centrella A, et al. Effects of scapulohumeral rehabilitation protocol on trunk control recovery in patients with subacute stroke: a pilot randomized controlled trial[J]. NeuroRehabilitation, 2017, 40(3): 337-343. DOI: 10.3233/NRE-161421.
|
[25] |
Mantovani E, Zucchella C, Bottiroli S, et al. Telemedicine and virtual reality for cognitive rehabilitation: a roadmap for the COVID-19 pandemic[J]. Front Neurol, 2020, 11: 926. DOI: 10.3389/fneur.2020.00926.
|