[1] |
|
[2] |
|
[3] |
Ward NS. Restoring brain function after stroke - bridging the gap between animals and humans[J]. Nat Rev Neurol, 2017, 13(4): 244-255. DOI: 10.1038/nrneurol.2017.34.
|
[4] |
Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke[J]. Cochrane Database Syst Rev, 2014, 2014(11): Cd010820. DOI: 10.1002/14651858.CD010820.pub2.
|
[5] |
Eklund G, Hagbarth KE. Normal variability of tonic vibration reflexes in man[J]. Exp Neurol, 1966, 16(1): 80-92. DOI: 10.1016/0014-4886(66)90088-4.
|
[6] |
Murillo N, Valls-Sole J, Vidal J, et al. Focal vibration in neurorehabilitation[J]. Eur J Phys Rehabil Med, 2014, 50(2): 231-242.
|
[7] |
|
[8] |
|
[9] |
Calabrò RS, Naro A, Russo M, et al. Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: a pilot randomized controlled trial[J]. PloS One, 2017, 12(10): e0185936. DOI: 10.1371/journal.pone.0185936.
|
[10] |
Sales RM, Cerqueira MS, Bezerra de Morais AT, et al. Acute effects of whole-body vibration on spinal excitability level and ankle plantar flexion spasticity in post-stroke individuals: a randomized controlled trial[J]. J Bodyw Mov Ther, 2020, 24(2): 37-42. DOI: 10.1016/j.jbmt.2019.05.018.
|
[11] |
Celletti C, Suppa A, Bianchini E, et al. Promoting post-stroke recovery through focal or whole body vibration: criticisms and prospects from a narrative review[J]. Neurol Sci, 2020, 41(1): 11-24. DOI: 10.1007/s10072-019-04047-3.
|
[12] |
Costantino C, Galuppo L, Romiti D. Short-term effect of local muscle vibration treatment versus sham therapy on upper limb in chronic post-stroke patients: a randomized controlled trial[J]. Eur J Phys Rehabil Med, 2017, 53(1): 32-40. DOI: 10.23736/S1973-9087.16.04211-8.
|
[13] |
|
[14] |
Alashram AR, Padua E, Romagnoli C, et al. Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: a systematic review[J]. NeuroRehabilitation, 2019, 45(4): 471-481. DOI: 10.3233/NRE-192863.
|
[15] |
Ribot-Ciscar E, Butler JE, Thomas CK. Facilitation of triceps brachii muscle contraction by tendon vibration after chronic cervical spinal cord injury[J]. J Appl Physiol (1985), 2003, 94(6): 2358-2367. DOI: 10.1152/japplphysiol.00894.2002.
|
[16] |
Cotey D, Hornby TG, Gordon KE, et al. Increases in muscle activity produced by vibration of the thigh muscles during locomotion in chronic human spinal cord injury[J]. Exp Brain Res, 2009, 196(3): 361-374. DOI: 10.1007/s00221-009-1855-9.
|
[17] |
Paoloni M, Mangone M, Scettri P, et al. Segmental muscle vibration improves walking in chronic stroke patients with foot drop: a randomized controlled trial[J]. Neurorehabil Neural Repair, 2010, 24(3): 254-262. DOI: 10.1177/1545968309349940.
|
[18] |
Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches[J]. Brain, 2011, 134(5): 1264-1276. DOI: 10.1093/brain/awr033.
|
[19] |
Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation[J]. Clin Neurophysiol, 2006, 117(8): 1641-1659. DOI: 10.1016/j.clinph.2006.01.016.
|
[20] |
Marconi B, Filippi GM, Koch G, et al. Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients[J]. Neurorehabil Neural Repair, 2011, 25(1): 48-60. DOI: 10.1177/1545968310376757.
|
[21] |
Li W, Li C, Xiang Y, et al. Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: an EEG study[J]. Brain Res, 2019, 1722: 146338. DOI: 10.1016/j.brainres.2019.146338.
|
[22] |
Li W, Li C, Xu Q, et al. Effects of focal vibration over upper limb muscles on the activation of sensorimotor cortex network: an EEG study[J]. J Healthc Eng, 2019, 2019: 9167028. DOI: 10.1155/2019/9167028.
|
[23] |
Li Hegner Y, Saur R, Veit R, et al. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination[J]. J Neurophysiol, 2007, 97(1): 264-271. DOI: 10.1152/jn.00617.2006.
|
[24] |
Lopez S, Bini F, Del Percio C, et al. Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects[J]. Neuroscience, 2017, 352: 236-248. DOI: 10.1016/j.neuroscience.2017.03.015.
|
[25] |
Sankarasubramanian V, Machado AG, Conforto AB, et al. Inhibition versus facilitation of contralesional motor cortices in stroke: deriving a model to tailor brain stimulation[J]. Clin Neurophysiol, 2017, 128(6): 892-902. DOI: 10.1016/j.clinph.2017.03.030.
|
[26] |
Song J, Young BM, Nigogosyan Z, et al. Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology[J]. Front Neuroeng, 2014, 7: 31. DOI: 10.3389/fneng.2014.00031.
|
[27] |
Dodd KC, Nair VA, Prabhakaran V. Role of the contralesional vs. ipsilesional hemisphere in stroke recovery[J]. Front Hum Neurosci, 2017, 11: 469. DOI: 10.3389/fnhum.2017.00469.
|
[28] |
Fridman EA, Hanakawa T, Chung M, et al. Reorganization of the human ipsilesional premotor cortex after stroke[J]. Brain, 2004, 127(Pt4): 747-758. DOI: 10.1093/brain/awh082.
|
[29] |
Marconi B, Filippi GM, Koch G, et al. Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects[J]. J Neurol Sci, 2008, 275(1-2): 51-59. DOI: 10.1016/j.jns.2008.07.025.
|
[30] |
Toscano M, Celletti C, Viganò A, et al. Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study[J]. Front Neurol, 2019, 10: 115. DOI: 10.3389/fneur.2019.00115.
|
[31] |
|
[32] |
Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs[J]. Muscle Nerve, 2007, 36(1): 21-29. DOI: 10.1002/mus.20796.
|
[33] |
Lee G, Cho Y, Beom J, et al. Evaluating the differential electrophysiological effects of the focal vibrator on the tendon and muscle belly in healthy people[J]. Ann Rehabil Med, 2014, 38(4): 494-505. DOI: 10.5535/arm.2014.38.4.494.
|
[34] |
Mileva KN, Bowtell JL, Kossev AR. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men[J]. Exp Physiol, 2009, 94(1): 103-116. DOI: 10.1113/expphysiol.2008.042689.
|
[35] |
Caliandro P, Celletti C, Padua L, et al. Focal muscle vibration in the treatment of upper limb spasticity: a pilot randomized controlled trial in patients with chronic stroke[J]. Arch Phys Med Rehabil, 2012, 93(9): 1656-1661. DOI: 10.1016/j.apmr.2012.04.002.
|
[36] |
Paoloni M, Tavernese E, Fini M, et al. Segmental muscle vibration modifies muscle activation during reaching in chronic stroke: a pilot study[J]. NeuroRehabilitation, 2014, 35(3): 405-414. DOI: 10.3233/NRE-141131.
|
[37] |
Cordo P, Lutsep H, Cordo L, et al. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients[J]. Neurorehabil Neural Repair, 2009, 23(1): 67-77. DOI: 10.1177/1545968308317437.
|
[38] |
Annino G, Alashram AR, Alghwiri AA, et al. Effect of segmental muscle vibration on upper extremity functional ability poststroke: a randomized controlled trial[J]. Medicine (Baltimore), 2019, 98(7): e14444. DOI: 10.1097/MD.0000000000014444.
|
[39] |
|
[40] |
Lapole T, Temesi J, Arnal PJ, et al. Modulation of soleus corticospinal excitability during achilles tendon vibration[J]. Exp Brain Res, 2015, 233(9): 2655-2662. DOI: 10.1007/s00221-015-4336-3.
|
[41] |
Conrad MO, Scheidt RA, Schmit BD. Effects of wrist tendon vibration on targeted upper-arm movements in poststroke hemiparesis[J]. Neurorehabil Neural Repair, 2011, 25(1): 61-70. DOI: 10.1177/1545968310378507.
|
[42] |
Moggio L, de Sire A, Marotta N, et al. Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews[J]. Disabil Rehabil, 2022, 44(20): 5741-5749. DOI: 10.1080/09638288.2021.1946175.
|
[43] |
Alashram AR, Padua E, Romagnoli C, et al. Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: a systematic review[J]. NeuroRehabilitation, 2019, 45(4): 471-481. DOI: 10.3233/NRE-192863.
|
[44] |
Li W, Li C, Liu P, et al. Development and preliminary validation of a pneumatic focal vibration system to the mitigation of post-stroke spasticity[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 380-388. DOI: 10.1109/TNSRE.2021.3052187.
|
[45] |
|
[46] |
师昉,李福亮,吕泽平.局部振动治疗仪对偏瘫患者下肢痉挛及三维步态参数的效果研究[J].中国医药导报, 2020, 17(29): 119-122.
|
[47] |
|
[48] |
Berger D, Bloechlinger S, von Haehling S, et al. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit[J]. J Cachexia Sarcopenia Muscle, 2016, 7(4): 403-412. DOI: 10.1002/jcsm.12108.
|
[49] |
Smilde HA, Vincent JA, Baan GC, et al. Changes in muscle spindle firing in response to length changes of neighboring muscles[J]. J Neurophysiol, 2016, 115(6): 3146-3155. DOI: 10.1152/jn.00937.2015.
|
[50] |
Guang H, Ji L, Shi Y. Focal vibration stretches muscle fibers by producing muscle waves[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(4): 839-846. DOI: 10.1109/TNSRE.2018.2816953.
|
[51] |
Akazawa N, Harada K, Okawa N, et al. Muscle mass and intramuscular fat of the quadriceps are related to muscle strength in non-ambulatory chronic stroke survivors: a cross-sectional study[J]. PLoS One, 2018, 13(8): e0201789. DOI: 10.1371/journal.pone.0201789.
|
[52] |
|
[53] |
Meyer PF, Oddsson LI, De Luca CJ. The role of plantar cutaneous sensation in unperturbed stance[J]. Exp Brain Res, 2004, 156(4): 505-512. DOI: 10.1007/s00221-003-1804-y.
|
[54] |
|
[55] |
Lee SW, Cho KH, Lee WH. Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: a randomized controlled trial[J]. Clin Rehabil, 2013, 27(10): 921-931. DOI: 10.1177/0269215513485100.
|
[56] |
Mikhael M, Orr R, Fiatarone Singh MA. The effect of whole body vibration exposure on muscle or bone morphology and function in older adults: a systematic review of the literature[J]. Maturitas, 2010, 66(2): 150-157. DOI: 10.1016/j.maturitas.2010.01.013.
|
[57] |
Jepsen DB, Thomsen K, Hansen S, et al. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis[J]. BMJ Open, 2017, 7(12): e018342. DOI: 10.1136/bmjopen-2017-018342.
|
[58] |
Bovenzi M, Schust M, Mauro M. An overview of low back pain and occupational exposures to whole-body vibration and mechanical shocks[J]. Med Lav, 2017, 108(6): 419-433. DOI: 10.23749/mdl.v108i6.6639.
|
[59] |
|