[1] |
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147): 147ra111. DOI: 10.1126/scitranslmed.3003748.
|
[2] |
Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J]. J Exp Med, 2015, 212(7): 991-999. DOI: 10.1084/jem.20142290.
|
[3] |
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341. DOI: 10.1038/nature14432.
|
[4] |
Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J]. Elife, 2018, 7: e40070. DOI: 10.7554/eLife.40070.
|
[5] |
Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain[J]. Physiol Rev, 2022, 102(2): 1025-1151. DOI: 10.1152/physrev.00031.2020.
|
[6] |
Wang Y, van Gelderen P, de Zwart JA, et al. Cerebrovascular activity is a major factor in the cerebrospinal fluid flow dynamics[J]. Neuroimage, 2022, 258: 119362. DOI: 10.1016/j.neuroimage.2022.119362.
|
[7] |
Wang S, Yu X, Cheng L, et al. Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice[J]. Cell Death Dis, 2024, 15(6): 448. DOI: 10.1038/s41419-024-06845-w.
|
[8] |
Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow[J]. Nat Commun, 2020, 11(1): 4411. DOI: 10.1038/s41467-020-18115-2.
|
[9] |
Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans[J]. Science, 2019, 363(6429): 880-884. DOI: 10.1126/science.aav2546.
|
[10] |
Muccio M, Chu D, Minkoff L, et al. Upright versus supine MRI: effects of body position on craniocervical CSF flow[J]. Fluids Barriers CNS, 2021, 18(1): 61. DOI: 10.1186/s12987-021-00296-7.
|
[11] |
Jani RH, Sekula RF, Jr. Magnetic resonance imaging of human dural meningeal lymphatics[J]. Neurosurgery, 2018, 83(1): E10-E12. DOI: 10.1093/neuros/nyy171.
|
[12] |
Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics[J]. J Clin Invest, 2017, 127(9): 3210-3219. DOI: 10.1172/jci90603. DOI: 10.3348/kjr.2020.0042.
|
[13] |
Taoka T, Naganawa S. Neurofluid dynamics and the glymphatic system: a neuroimaging perspective[J]. Korean J Radiol, 2020, 21(11): 1199-1209. DOI: 10.3348/kjr.2020.0042.
|
[14] |
Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI[J]. J Clin Invest, 2013, 123(3): 1299-1309. DOI: 10.1172/JCI67677.
|
[15] |
Bae YJ, Kim JM, Choi BS, et al. Altered brain glymphatic flow at diffusion-tensor MRI in rapid eye movement sleep behavior disorder[J]. Radiology, 2023, 307(5): e221848. DOI: 10.1148/radiol.221848.
|
[16] |
Yatsushiro S, Sunohara S, Hayashi N, et al. Cardiac-driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique[J]. Magn Reson Med Sci, 2018, 17(2): 151-160. DOI: 10.2463/mrms.mp.2017-0014.
|
[17] |
Ohene Y, Harrison IF, Nahavandi P, et al. Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study[J]. Neuroimage, 2019, 188: 515-523. DOI: 10.1016/j.neuroimage.2018.12.026.
|
[18] |
Chen Y, Dai Z, Fan R, et al. Glymphatic system visualized by chemical-exchange-saturation-transfer magnetic resonance imaging[J]. ACS Chem Neurosci, 2020, 11(13): 1978-1984. DOI: 10.1021/acschemneuro.0c00222.
|
[19] |
Wu CH, Lirng JF, Ling YH, et al. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood-brain barrier leakage[J]. Ann Neurol, 2021, 89(1): 111-124. DOI: 10.1002/ana.25928.
|
[20] |
Huang SY, Zhang YR, Guo Y, et al. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease[J]. Alzheimers Dement, 2024, 20(5): 3251-3269. DOI: 10.1002/alz.13789.
|
[21] |
Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus[J]. Brain, 2017, 140(10): 2691-2705. DOI: 10.1093/brain/awx191.
|
[22] |
Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes[J]. J Neuroimmune Pharmacol, 2013, 8(4): 840-856. DOI: 10.1007/s11481-013-9470-8.
|
[23] |
Schulz-Heik RJ, Poole JH, Dahdah MN, et al. Service needs and barriers to care five or more years after moderate to severe TBI among veterans[J]. Brain Inj, 2017, 31(10): 1287-1293. DOI: 10.1080/02699052.2017.1307449.
|
[24] |
Bolte AC, Dutta AB, Hurt ME, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis[J]. Nat Commun, 2020, 11(1): 4524. DOI: 10.1038/s41467-020-18113-4.
|
[25] |
Antila S, Karaman S, Nurmi H, et al. Development and plasticity of meningeal lymphatic vessels[J]. J Exp Med, 2017, 214(12): 3645-3667. DOI: 10.1084/jem.20170391.
|
[26] |
Xu Y, Yuan L, Mak J, et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3[J]. J Cell Biol, 2010, 188(1): 115-130. DOI: 10.1083/jcb.200903137.
|
[27] |
Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease[J]. Nature, 2018, 560(7717): 185-191. DOI: 10.1038/s41586-018-0368-8.
|
[28] |
Liao J, Zhang M, Shi Z, et al. Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury[J]. J Neurotrauma, 2023, 40(3-4): 383-394. DOI: 10.1089/neu.2022.0150.
|
[29] |
Chen J, Wang L, Xu H, et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage[J]. Nat Commun, 2020, 11(1): 3159. DOI: 10.1038/s41467-020-16851-z.
|
[30] |
Wang X, Zhang A, Yu Q, et al. Single-cell RNA sequencing and spatial transcriptomics reveal pathogenesis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage[J]. Adv Sci (Weinh), 2023, 10(21): e2301428. DOI: 10.1002/advs.202301428.
|
[31] |
Yuan J, Liu X, Nie M, et al. Inactivation of ERK1/2 signaling mediates dysfunction of basal meningeal lymphatic vessels in experimental subdural hematoma[J]. Theranostics, 2024, 14(1): 304-323. DOI: 10.7150/thno.87633.
|
[32] |
Zille M, Farr TD, Keep RF, et al. Novel targets, treatments, and advanced models for intracerebral haemorrhage[J]. EBioMedicine, 2022, 76: 103880. DOI: 10.1016/j.ebiom.2022.103880.
|
[33] |
Xia F, Keep RF, Ye F, et al. The fate of erythrocytes after cerebral hemorrhage[J]. Transl Stroke Res, 2022, 13(5): 655-664. DOI: 10.1007/s12975-021-00980-8.
|
[34] |
Zheng Y, Tan X, Cao S. The critical role of erythrolysis and microglia/macrophages in clot resolution after intracerebral hemorrhage: a review of the mechanisms and potential therapeutic targets[J]. Cell Mol Neurobiol, 2023, 43(1): 59-67. DOI: 10.1007/s10571-021-01175-3.
|
[35] |
Jeon H, Kim M, Park W, et al. Upregulation of AQP4 improves blood-brain barrier integrity and perihematomal edema following intracerebral hemorrhage[J]. Neurotherapeutics, 2021, 18(4): 2692-2706. DOI: 10.1007/s13311-021-01126-2.
|
[36] |
Liu X, Wu G, Tang N, et al. Glymphatic drainage blocking aggravates brain edema, neuroinflammation via modulating TNF-α, IL-10, and AQP4 after intracerebral hemorrhage in rats[J]. Front Cell Neurosci, 2021, 15: 784154. DOI: 10.3389/fncel.2021.784154.
|
[37] |
Tsai HH, Hsieh YC, Lin JS, et al. Functional investigation of meningeal lymphatic system in experimental intracerebral hemorrhage [J]. Stroke, 2022, 53(3): 987-998. DOI: 10.1161/strokeaha.121.037834.
|
[38] |
Ding XB, Wang XX, Xia DH, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease[J]. Nat Med, 2021, 27(3): 411-418. DOI: 10.1038/s41591-020-01198-1.
|
[39] |
Zou W, Pu T, Feng W, et al. Blocking meningeal lymphatic drainage aggravates Parkinson's disease-like pathology in mice overexpressing mutated α-synuclein[J]. Transl Neurodegener, 2019, 8: 7. DOI: 10.1186/s40035-019-0147-y.
|
[40] |
Antila S, Chilov D, Nurmi H, et al. Sustained meningeal lymphatic vessel atrophy or expansion does not alter Alzheimer's disease-related amyloid pathology[J]. Nat Cardiovasc Res, 2024, 3: 474-491. DOI: 10.1038/s44161-024-00445-9.
|
[41] |
Li W, Chen D, Liu N, et al. Modulation of lymphatic transport in the central nervous system[J]. Theranostics, 2022, 12(3): 1117-1131. DOI: 10.7150/thno.66026.
|
[42] |
Wu CH, Chang FC, Wang YF, et al. Impaired glymphatic and meningeal lymphatic functions in patients with chronic migraine[J]. Ann Neurol, 2024, 95(3): 583-595. DOI: 10.1002/ana.26842.
|