切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2017, Vol. 07 ›› Issue (02) : 75 -79. doi: 10.3877/cma.j.issn.2095-123X.2017.02.006

所属专题: 文献

综述

染色体22q11 microRNAs缺失与精神分裂症
周亚楠1, 翟金国1,(), 魏钦令2   
  1. 1. 272067 济宁,济宁医学院精神卫生学院
    2. 510630 广州,中山大学第三附属医院精神科
  • 收稿日期:2016-09-08 出版日期:2017-04-01
  • 通信作者: 翟金国
  • 基金资助:
    山东省自然科学基金项目(ZR2012HM065); 山东省医药卫生科技发展计划项目(2015WS0417)

Deletion of chromosome 22q11 microRNAs and schizophrenia

Yanan Zhou1, Jinguo Zhai1,(), Qinling Wei2   

  1. 1. Mental Health Institution, Jining Medical College, Jining 272067, China
    2. Department of Psychiatry, the Third Affiliated Hospital of SUN YAT-SEN University, Guangzhou 510630, China
  • Received:2016-09-08 Published:2017-04-01
  • Corresponding author: Jinguo Zhai
  • About author:
    Corresponding author: Zhai Jinguo, Email:
引用本文:

周亚楠, 翟金国, 魏钦令. 染色体22q11 microRNAs缺失与精神分裂症[J]. 中华脑科疾病与康复杂志(电子版), 2017, 07(02): 75-79.

Yanan Zhou, Jinguo Zhai, Qinling Wei. Deletion of chromosome 22q11 microRNAs and schizophrenia[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2017, 07(02): 75-79.

关于microRNAs对22q11缺失诱发的精神分裂症的发病机制的研究已成为热门研究的方向之一。22q11缺失导致microRNA介导的异常调节,它已成为精神分裂症的高危因素,主要候选基因是DGCR8和MIR185,DGCR8是参与编码microRNA生物合成必不可少的微处理器;而MIR185编码micro185。22q11缺失症的小鼠模型已经证实了大脑中microRNA生物合成的改变,DGCR8单倍剂量不足可能通过一个特殊的microRNA子集的下调导致了这些改变,MIR185编码的microRNA在前额叶皮质和海马体是高分下调的,而这些脑区是精神分裂症研究的关键脑区。另外,MIR185有两个已经验证的靶基因(RhoA、Cdc42),这两个基因与精神分裂症中表达水平的改变有关。本文对国内外就染色体22q11 microRNAs缺失与精神分裂症关系的文献进行综述。

The research effort has focused on the mircroRNAs and the pathogenesis of schizophrenia induced by 22q11 deletion now. The 22q11 deletion, which contribut to mircoRNA-mediated dysregulation, is a genetic risk factor for schizophrenia. Primary candidate genes are DGCR8, which encodes a component of the microprocessor complex essential for microRNA biogenesis, and MIR185, which encodes microRNA 185. Mouse models of 22q11.2DS have demonstrated alterations in brain microRNA biogenesis, and that DGCR8 haploinsufficiency may contribute to these alterations, down regulation of a specific microRNA subset.miR-185 was the top-scoring down-regulated microRNA in both the prefrontal cortex and the hippocampus, brain areas which are the key foci of schizophrenia. In addition, MIR185 has two validated targets (RhoA, Cdc42), both of which have been associated with altered expression levels in schizophrenia .In this paper, literatures on deletion of chromosome 22q11 microRNAs and schizophrenia were reviewed.

[1]
Kim N.Regulation of MicroRNA Biogenesis [J].Nat Rev Mol Cell Biol, 2014, 15(8):605-610.
[2]
Janas MM, Wang B, Harris AS, et al.Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins [J].RNA,2012,18(11):2041-2055.
[3]
Vaishnavi V, Manikandan M, Munirajan AK.Mining the 3′UTR of Autism-implicated Genes for SNPs Perturbing MicroRNA Regulation[J]. Genomics Proteomics Bioinformatics, 2014,12(2):92-104.
[4]
Xu B, Karayiorgou M, Gogos JA. MicroRNAs in psychiatric and neurodevelopmental disorders [J].Brain Res,2010,1338(2):78-88.
[5]
Benetti S, Mechelli A, Picchioni M, et al. Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state [J]. Brain, 2009,132(9):2426-2436.
[6]
Stark KL, Xu B, Bagchi A, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model [J]. Nat Genet, 2008,40(6):751-760.
[7]
Fung WL, Mcevilly R, Fong J, et al.Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome [J]. Am J Psychiatry,2010,167(8):998.
[8]
Stefansson H, Rujescu D, Cichon S, et al.Large recurrent microdeletions associated with schizophrenia [J]. Nature, 2008,455(7210):232-236.
[9]
Sporn A, Addington A, Reiss AL, et al.22q11 deletion syndrome in childhood onset schizophrenia: an update [J]. Mol Psychiatry,2003,9(3):225-226.
[10]
Green T, Gothelf D, Glaser B, et al.Psychiatric Disorders and Intellectual Functioning Throughout Development in Velocardiofacial (22q11.2 Deletion) Syndrome [J].J Am Acad Child Adolesc Psychiatry,2009,48(11):1060-1068.
[11]
Shaikh TH, Kurahashi H, Saitta SC, et al.Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis [J].Hum Mol Genet,2000,9(4):489-501.
[12]
Karayiorgou M, Simon TJ, Gogos JA.22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia [J].Nat Rev Neurosci,2010,11(6):402-416.
[13]
Mukai J.Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion [J].Nat Neurosci,2008,11(11):1302-1310.
[14]
Merico D, Costain G, Butcher NJ, et al.MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome [J].Front Neurol,2014,5(24):238.
[15]
Quick-Cleveland J, Jacob J, Weitz S, et al.The DGCR8 RNA-Binding Heme Domain Recognizes Primary MicroRNAs by Clamping the Hairpin [J].Cell Rep,2014,7(6):1994-2005.
[16]
Wang Y, Medvid R, Melton C, et al.DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal [J].Nat Genet,2007,39(3):380-385.
[17]
Schofield C, Hsu M,et al.Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex[J].Neural Dev,2011,6(1):1-10.
[18]
Ursu S, Kring AM, Gard MG, et al. Prefrontal cortical deficits and impaired cognition-emotion interactions in schizophrenia[J]. Am J Psychiatry, 2011, 168(3):276-285.
[19]
Fénelon K, Mukai J, Xu B, et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex[J]. Proc Natl Acad of Sci USA, 2011, 108(11):4447-4452.
[20]
Hsu Ruby, Schofield Claude M, Cruz Cassandra G Dela, et al. Dgcr8 is required in pyramidal neurons for normal inhibitory synaptic function[J]. Mol Cel Neurosci, 2012, 50(3-4):283-292.
[21]
Fénelon K, Xu B, Lai CS, et al. The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion[J]. J Neurosci, 2013, 33(37):14825-14839.
[22]
Toritsuka M, Kimoto S, Muraki K, et al. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model[J]. Proc Natl Acad Sci USA, 2013, 110(43):17552-17557.
[23]
Ouchi Y, Banno Y, Shimizu Y, et al. Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2[J]. J Neurosci, 2013, 33(22):9408-9419.
[24]
Karayiorgou M, Simon TJ, Gogos JA. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia[J]. Nat Rev Neurosci, 2010, 11(6):402-416.
[25]
Xu B, Hsu PK, Stark KL, et al. Derepression of a Neuronal Inhibitor due to miRNA Dysregulation in a Schizophrenia-Related Microdeletion[J]. Cell, 2013, 152(1-2):262-275.
[26]
Earls LR, Fricke RG, Yu J, et al. Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia.[J]. J Neurosci, 2012, 32(41):14132-14144.
[27]
Ming L, Nan L, Chen X, et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells[J]. Cancer Lett, 2011, 301(2):151-160.
[28]
Hill JJ, Hashimoto T, Lewis D A. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia[J]. Mol Psychiatry, 2006, 11(6):557-566.
[29]
Ide M, Lewis DA. Altered Cortical CDC42 Signaling Pathways in Schizophrenia: Implications for Dendritic Spine Deficits[J]. Biol Psychiatry, 2010, 68(1):25-32.
[30]
Forstner AJ, Basmanav FB, Mattheisen M, et al. Investigation of the involvement of MIR185 and its target genes in the development of schizophrenia[J]. J Psychiatry Neurosci, 2014, 39(6):386-396.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[3] 丁丰悦, 武宏春, 黄莹, 殷为民, 雷伟. miR-148/152家族调控内皮细胞糖酵解相关基因的表达分析[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 321-328.
[4] 欧苏文, 罗康佳, 管子龙, 黄睿. MicroRNAs调控结直肠癌干细胞的研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(03): 306-312.
[5] 唐晓琳, 孔霞, 王槐高, 李蓉. miR-3182调控LPPR4表达并抑制成骨细胞分化成熟的研究[J]. 中华老年骨科与康复电子杂志, 2021, 07(03): 176-180.
[6] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[7] 赵小玉, 李彦东, 吴昊, 范海, 吕明月, 沈宇晟, 盛成俊, 曾加, 吴徐超, 朱国华, 更·党木仁加甫. 外泌体miRNA在脑胶质瘤中的诊断、治疗和预后的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 370-374.
[8] 冯佳佳, 刘丹, 张广炜, 金丽霞. microRNA与脑动脉粥样硬化斑块破裂的研究新进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 601-604.
[9] 李晗, 高蓉, 闫冰迪, 胡长英, 候蒙蒙, 杨俊玲. 痰液中microRNA-21对肺癌诊断价值的Meta分析[J]. 中华临床医师杂志(电子版), 2021, 15(03): 177-181.
[10] 姚珍珍, 陈昂昂, 周亚楠, 赵高峰, 张申帅, 翟金国, 陈敏. 精神分裂症认知功能损害的特点、机制及干预方式研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 28-32.
[11] 孙振晓, 刘化学, 任德菊. 烦渴-间歇性低钠血症-精神病综合征诊断学特征并文献复习[J]. 中华诊断学电子杂志, 2022, 10(04): 266-269.
[12] 林玮怡, 林慧, 陈建仁, 肖龙, 岑修记, 黄登强. 精神分裂症患者病情与超敏C反应蛋白水平变化关系[J]. 中华诊断学电子杂志, 2022, 10(02): 119-122.
[13] 李锡勇, 杨溯, 张雄杰, 李松风, 韩鹏飞. microRNA与老年性骨关节炎[J]. 中华老年病研究电子杂志, 2022, 09(03): 51-55.
[14] 马晓瑭, 李婵娣, 李嘉辉, 许小冰. 高表达microRNA-17的内皮祖细胞外泌体对糖尿病缺血性脑卒中的治疗作用[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 263-274.
[15] 王孟杰, 冯嵩, 马文渊, 陈超, 靳峰. 外泌体及其携带的microRNA与脑卒中的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(06): 418-421.
阅读次数
全文


摘要