切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 153 -159. doi: 10.3877/cma.j.issn.2095-123X.2020.03.006

所属专题: 文献

临床研究

基于TCGA和CGGA数据库探究KIF15在胶质瘤中的表达及临床意义
钟光华1,(), 郑守链2, 唐娉1   
  1. 1. 528000 广东佛山,佛山市禅城区中心医院肿瘤科
    2. 518107 深圳,中山大学附属第七医院神经外科
  • 收稿日期:2020-09-29 出版日期:2020-06-15
  • 通信作者: 钟光华

Expression profile and clinical significance of KIF15 in glioma based on TCGA and CGGA databases

Guanghua Zhong1,(), Shoulian Zheng2, Ping Tang1   

  1. 1. Department of Oncology, Chancheng District Central Hospital, Foshan 528000, China
    2. Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
  • Received:2020-09-29 Published:2020-06-15
  • Corresponding author: Guanghua Zhong
引用本文:

钟光华, 郑守链, 唐娉. 基于TCGA和CGGA数据库探究KIF15在胶质瘤中的表达及临床意义[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 153-159.

Guanghua Zhong, Shoulian Zheng, Ping Tang. Expression profile and clinical significance of KIF15 in glioma based on TCGA and CGGA databases[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(03): 153-159.

目的

通过挖掘美国癌症基因图谱计划(TCGA)和中国脑胶质瘤基因图谱计划(CGGA)中胶质瘤基因谱数据库,分析KIF15在胶质瘤中的表达及临床意义。

方法

通过人类蛋白数据库探究KIF15在神经系统中的表达特征。获取TCGA和CGGA中胶质瘤患者肿瘤样本全基因转录组(mRNAseq)数据,分析KIF15在不同级别和病理类型胶质瘤中的转录水平差异,及其与患者中位生存期的关系。通过胶质瘤标本芯片进行KIF15的免疫组织化学染色,分析KIF15在胶质瘤不同级别中的蛋白水平差异,通过转录组数据分析KIF15与肿瘤增殖指标Ki67的相关性,并通过差异基因(DEGs)进行基因本体(GO)分析和信号通路富集(KEGG)分析探讨KIF15在胶质瘤中参与调控的分子信号通路。

结果

在中枢神经系统大脑中,各部位组织可检测到KIF15的蛋白水平和转录水平均较低。TCGA和CGGA转录组数据分析显示,胶质瘤WHO级别越高,KIF15的mRNA水平显著增高,WHO Ⅳ级相较于WHO Ⅱ级和Ⅲ级,差异有统计学意义(P<0.05);并且,在胶质母细胞瘤中KIF15的mRNA水平最高,相比较于星形胶质细胞、少突胶质细胞瘤、少突星形胶质细胞瘤、间变性星形胶质细胞瘤、间变性少突胶质细胞瘤,差异均有统计学意义(P<0.05)。KIF15高水平组患者的中位生存期较KIF15低水平组更短,差异有统计学意义(P<0.05)。胶质瘤组织芯片染色结果显示,WHO级别越高,胶质瘤组织染色强度评分趋向更高,WHO Ⅳ级胶质瘤评分以2、3分为主,而WHO Ⅱ级以0、1分为主。KIF15Ki67的mRNA水平之间为显著性正相关关系,在TCGA转录组数据和CGGA转录组数据库中r值分别为0.725、0.706。TCGA转录组数据共筛选到707个DEGs,KIF15高水平组相比较于KIF15低水平组,表达水平升高的DEGs有328个,表达水平降低的DEGs有379个。GO分析显示这些DEGs参与的生物学过程前10位包括有细胞周期转换和细胞有丝分裂调控。分子信号通路KEGG分析显示DEGs参与的分子信号通路包括细胞周期、P53通路和DNA复制。

结论

KIF15在胶质瘤中高表达,并且高水平KIF15预示胶质瘤恶性程度高,患者生存期较差。KIF15参与调控了肿瘤细胞周期通路,可能是一个潜在的胶质瘤基因治疗靶点。

Objective

To explore the expression and clinical significance of KIF15 in glioma were analyzed by mining The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) glioma gene profiling databases.

Methods

The expression characteristics of KIF15 in the nervous system were explored through the human protein database. The mRNAseq data of tumor samples from glioma patients in TCGA and CGGA were obtained to analyze the differences in the transcription level of KIF15 in glioma of different grades and pathological types, as well as the relationship between the differences in the transcription level of KIF15 and the median survival time of patients. Immunohistochemical staining of KIF15 was performed on the glioma specimen chip to analyze the difference of KIF15 protein level in different glioma levels, and the correlation between KIF15 and tumor proliferation index Ki67 was analyzed by transcriptome data, and the molecular signaling pathway of KIF15 involved in regulation in glioma was discussed by gene ontology (GO) analysis and kyoto encyclopedia of genes and genomes (KEGG) analysis of differentially expressed genes (DEGs).

Results

Low levels of KIF15 protein and transcription were detected in various parts of the brain of the central nervous system. Analysis of TCGA and CGGA transcriptome data showed that the higher the level of glioma WHO was, the higher the mRNA level of KIF15 was, and the difference was statistically significant when compared with WHO grade Ⅳ and WHO grade Ⅱ and Ⅲ (P<0.05); Moreover, KIF15 mRNA level was the highest in glioblastoma, which was statistically different from that in astrocytes, oligodendrogliomas, oligoastrocytoma, anaplastic astrocytoma, and anaplastic oligodendrogliomas (P<0.05). The median survival time of patients with high KIF15 transcription level was shorter than that of patients with low KIF15 transcription level, and the difference was statistically significant (P<0.05). The results of glioma tissue chip staining showed that the higher the WHO grade was, the higher the staining intensity score of glioma tissue tended to be. The WHO grade Ⅳ glioma score was mainly 2 points and 3 points, while the WHO grade Ⅱ score was mainly 0 and 1 point. The mRNA levels of KIF15 and Ki67 were significantly positively correlated, with r values of 0.725 and 0.706 in the TCGA transcriptome data and the CGGA transcriptome database, respectively. A total of 707 DEGs were screened from the TCGA transcriptomic data. Compared with the low KIF15 group, 328 DEGs with increased expression level and 379 DEGs with decreased expression level were detected in the high KIF15 group. GO analysis showed that the top 10 biological processes in which these DEGs are involved include cell cycle transformation and cell mitosis regulation. Molecular signaling pathways KEGG analysis showed that DEGs was involved in molecular signaling pathways including cell cycle, P53 pathway, and DNA replication.

Conclusion

KIF15 is highly expressed in gliomas, and a high level of KIF15 indicates a high degree of glioma malignancy and a poor survival. KIF15 is involved in the regulation of tumor cell cycle pathways and may be a potential target for glioma gene therapy.

图1 KIF15的正常人体组织及神经系统中的表达特征
图2 KIF15在胶质瘤中的表达及临床意义
图3 KIF15转录水平与相关肿瘤增殖指标Ki67的相关性
图4 KIF15参与调控的分子信号通路
[1]
杨帆.胶质母细胞瘤免疫治疗的研究现状及进展[J].中国微侵袭神经外科杂志, 2020, 25(8): 376-378.
[2]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352(10): 987-996.
[3]
Roth P, Valavanis A, Weller M. Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti-PD-1 treatment with nivolumab[J]. Neuro Oncol, 2017, 19(3): 454-456.
[4]
蒋海辉,林松.脑胶质母细胞瘤的治疗现状与展望[J].中华外科杂志, 2020, 58(1): 70-74.
[5]
吕英琪,陈曜星,卫晨萱,等.胶质母细胞瘤的免疫治疗研究进展[J].药学学报, 2019, 54(10): 1792-1801.
[6]
Yang J, Yan J, Liu B. Targeting EGFRvIII for glioblastoma multiforme[J]. Cancer Lett, 2017, 403: 224-230.
[7]
Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma[J]. Nat Med, 2019, 25(3): 477-486.
[8]
Terribas E, Fernández M, Mazuelas H, et al. KIF11 and KIF15 mitotic kinesins are potential therapeutic vulnerabilities for malignant peripheral nerve sheath tumors[J]. Neurooncol Adv, 2020, 2(Suppl 1): i62-i74.
[9]
Sebastian J. Dihydropyrazole and dihydropyrrole structures based design of Kif15 inhibitors as novel therapeutic agents for cancer[J]. Comput Biol Chem, 2017, 68: 164-174.
[10]
Haraguchi K, Hayashi T, Jimbo T, et al. Role of the kinesin-2 family protein, KIF3, during mitosis[J]. J Biol Chem, 2006, 281(7): 4094-4099.
[11]
Rapley J, Nicolàs M, Groen A, et al. The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation[J]. J Cell Sci, 2008, 121(Pt 23): 3912-3921.
[12]
Reinemann DN, Sturgill EG, Das DK, et al. Collective force regulation in anti-parallel microtubule gliding by dimeric Kif15 kinesin motors[J]. Curr Biol, 2017, 27(18): 2810-2820.e6.
[13]
Brouwers N, Mallol Martinez N, Vernos I. Role of Kif15 and its novel mitotic partner KBP in K-fiber dynamics and chromosome alignment[J]. PLoS One, 2017, 12(4): e0174819.
[14]
McHugh T, Drechsler H, McAinsh AD, et al. Kif15 functions as an active mechanical ratchet[J]. Mol Biol Cell, 2018, 29(13): 1743-1752.
[15]
Tanenbaum ME, Macurek L, Janssen A, et al. Kif15 cooperates with eg5 to promote bipolar spindle assembly[J]. Curr Biol, 2009, 19(20): 1703-1711.
[16]
Wang J, Guo X, Xie C, et al. Kif15 promotes pancreatic cancer proliferation via the MEK-ERK signalling pathway[J]. Br J Cancer, 2017, 117(2): 245-255.
[17]
Qiao Y, Chen J, Ma C, et al. Increased Kif15 expression predicts a poor prognosis in patients with lung adenocarcinoma[J]. Cell Physiol Biochem, 2018, 51(1): 1-10.
[18]
Zou JX, Duan Z, Wang J, et al. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance[J]. Mol Cancer Res, 2014, 12(4): 539-549.
[19]
Kanapathipillai M. Treating P53 mutant aggregation-associated cancer[J]. Cancers (Basel), 2018, 10(6): 154.
[1] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[2] 兰伟途, 武峰, 何建昌, 兰文达, 王万宏. miRNA-199a-5p靶向CDCA7L对胶质瘤细胞迁移及侵袭的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 272-278.
[3] 程亚飞, 任长远, 李海马, 孙恺, 马亚群. FSTL1基因在胶质瘤发展中作用的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 206-215.
[4] 王志文, 王长峰, 王海江. 肉桂醛经HIF-1α抑制肿瘤的研究进展及展望[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 247-251.
[5] 余成龙, 刘静, 林帆, 张协军, 阳吉虎, 刘玉飞, 陈垒, 张玛莉, 蒋太鹏, 李维平, 黄国栋, 陈凡帆. 多学科诊疗门诊在神经肿瘤病例中的诊治效率评估[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 229-235.
[6] 袁英淇, 闫润芝, 范益民. ATRX丢失与胶质瘤患者预后及IDH突变相关性的Meta分析[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 161-167.
[7] 麦麦提力·米吉提, 李云雷, 吴昊, 李彦东, 沈宇晟, 吕明月, 朱国华. 弥散张量成像传导束重建技术指导高级别胶质瘤切除的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 101-105.
[8] 赵小玉, 李彦东, 吴昊, 范海, 吕明月, 沈宇晟, 盛成俊, 曾加, 吴徐超, 朱国华, 更·党木仁加甫. 外泌体miRNA在脑胶质瘤中的诊断、治疗和预后的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 370-374.
[9] 向琰, 黄国浩, 杨伟, 刘国龙, 谢源, 吕胜青. 显微镜下黄荧光引导技术切除高级别脑胶质瘤[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 319-320.
[10] 娜迪热·依明, 崔红, 努尔比亚·牙生, 祖莱娅提·阿不都热依木, 祖丽凯麦尔·阿布拉江, 麦麦提力·米吉提. 胶质瘤的表观遗传学发展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 309-315.
[11] 陈璐, 李启露, 李姝君. Tenascin-C在胶质瘤中的表达及对替莫唑胺疗效的影响[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(03): 132-138.
[12] 徐杨熙, 黄海韬, 马逸, 王斌, 王全才, 李岩峰, 周建波, 董经宇. 初步探索DIM-C-pPhOH(NR4A1拮抗剂)对胶质瘤细胞增殖、迁移及侵袭的抑制作用及作用机制[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(06): 339-345.
[13] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 黄贞亮, 赵铎. 针刀治疗胶质瘤术后头痛案[J]. 中华针灸电子杂志, 2022, 11(04): 144-145.
阅读次数
全文


摘要