切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 218 -224. doi: 10.3877/cma.j.issn.2095-123X.2020.04.005

所属专题: 文献

颅内肿瘤

动态增强磁共振在听神经鞘瘤中的应用研究
姚一焓1, 张岩松1,()   
  1. 1. 210029 南京,南京医科大学附属脑科医院神经外科
  • 收稿日期:2021-01-10 出版日期:2020-08-15
  • 通信作者: 张岩松
  • 基金资助:
    南京市卫生青年人才第一层次培养项目(QRX11010)

Application of dynamic contrast-enhanced MRI in acoustic schwannoma

Yihan Yao1, Yansong Zhang1,()   

  1. 1. Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2021-01-10 Published:2020-08-15
  • Corresponding author: Yansong Zhang
引用本文:

姚一焓, 张岩松. 动态增强磁共振在听神经鞘瘤中的应用研究[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 218-224.

Yihan Yao, Yansong Zhang. Application of dynamic contrast-enhanced MRI in acoustic schwannoma[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(04): 218-224.

目的

研究动态增强磁共振成像(DCE-MRI)中的各参数指标对听神经鞘瘤的血供来源评估中的应用价值,为听神经鞘瘤的临床治疗提供客观的分析依据。

方法

纳入南京医科大学附属脑科医院神经外科自2019年9月至2021年1月收治的16例听神经鞘瘤患者为研究对象,同时选择8例无听神经鞘瘤病史患者为对照组。16例听神经鞘瘤患者均于术前行常规MRI平扫+增强,再行DCE-MRI扫描,注射对比剂之后,根据DCE-MRI图像强化部位分为内听道组(6例)和颅内组(10例);对照组行DCE-MRI扫描。应用PHILIPS影像处理工作站对所有DCE-MRI图像进行后处理,获取时间-信号强度曲线(TIC)及半定量参数:最大信号强度(SImax)、达峰时间(TTP)、最大上升斜率(MSI)、对比剂摄取率(WIR)。将对照组、内听道组及颅内组的TIC类型构成及半定量参数值进行统计学分析,采用χ2检验及Kruskal-Wallis检验进行组间比较。

结果

对照组TIC Ⅰ、Ⅱ、Ⅲ型分别为8、0、0例,内听道组分别为0、1、5例,颅内组分别为4、6、0例,3组比较差异均有统计学意义(P<0.05);内听道组与颅内组比较,差异有统计学意义(P<0.05)。对照组SImax、TTP、MSI、WIR均小于内听道组和颅内组,差异均有统计学意义(P<0.05);内听道组SImax、TTP、WIR与颅内组比较,差异均无统计学意义(P>0.05);内听道组MSI大于颅内组,差异有统计学意义(P<0.05)。

结论

DCE-MRI的TIC及半定量参数中的MSI对于鉴别听神经鞘瘤的血供来源是经颅内(椎-基底动脉系统)还是内听道(颈外动脉分支)有一定意义。

Objective

To study the application value of various parameters in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in evaluating the blood supply of acoustic schwannoma, and to provide objective analysis basis for clinical treatment of acoustic schwannoma.

Methods

Sixteen patients with acoustic schwannoma admitted to neurosurgery department of the Affiliated Brain Hospital of Nanjing Medical University from September 2019 to January 2021 were selected as the research objects, and 8 patients without acoustic schwannoma history were selected as the control group. Sixteen cases of acoustic neurilemmoma were performed conventional MRI scan and contrast enhancement before operation, and then underwent DCE-MRI scan. After injection of contrast agent, they were divided into internal auditory canal group (6 cases) and intracranial group (10 cases) according to the enhancement site of DCE-MRI image; the control group underwent DCE-MRI scan. All DCE-MRI images were post processed by Philips image processing workstation to obtain tic curve and semi quantitative parameters, including maximum signal intensity (SImax), time to peak (TTP), maximum slope of increase (MSI), wash in rate (WIR). The time signal intensity curve (TIC) types and semi-quantitative parameter values of the control group, internal auditory canal group and intracranial group were statistically analyzed, and the χ2 test and Kruskal-Wallis test were used for comparison between groups.

Results

In the control group, TICs of type Ⅰ, Ⅱ and Ⅲ were 8, 0, and 0 cases, respectively. In the internal auditory canal group, TICs of type Ⅰ, Ⅱ and Ⅲ were 0, 1, and 5 cases, respectively. In the intracranial group, TICs were Ⅰ, Ⅱ and Ⅲ were 4, 6, and 0 cases, respectively. The difference between the control group and the internal auditory canal group, intracranial group was statistically significant (P<0.05); Comparing the internal auditory canal group with the intracranial group, the difference was statistically significant (P<0.05). SImax, TTP, MSI, WIR of control group are all lower than those of the internal auditory canal group and the intracranial group, the differences were statistically significant (P<0.05). There were no significant differences in SImax, TTP, WIR between the internal auditory canal group and the intracranial group (P>0.05); MSI in the internal auditory canal group was higher than that in the intracranial group (P<0.05).

Conclusion

The TIC of DCE-MRI and the MSI in the semi quantitative parameters have certain significance for identifying whether the blood supply of acoustic schwannomas is transcranial (vertebral-basal artery system) or internal auditory canal (external carotid artery branch).

图1 内听道组典型病例注射对比剂后的影像学资料
表1 3组患者的时间-信号强度曲线类型的比较
表2 3组半定量参数的比较分析(Mean±SD)
图2 听神经鞘瘤典型病例1的影像学资料
图3 听神经鞘瘤典型病例2的影像学资料
[1]
Stucken EZ, Brown K, Selesnick SH. Clinical and diagnostic evaluation of acoustic neuromas[J]. Otolaryngol Clin North Am, 2012, 45(2): 269-284, vii.
[2]
Yamakami I, Kobayashi E, Iwadate Y, et al. Hypervascular vestibular schwannomas[J]. Surg Neurol, 2002, 57(2): 105-112.
[3]
Teranishi Y, Kohno M, Sora S, et al. Hypervascular vestibular schwannomas: clinical characteristics, angiographical classification, and surgical considerations[J]. Oper Neurosurg (Hagerstown), 2018, 15(3): 251-261.
[4]
李龄,雷霆,韩林.富含血管的听神经瘤[J].中华神经外科杂志, 2007, 23(4): 243-245.
[5]
Perneczky A. Blood supply of acoustic neurinomas[J]. Acta Neurochir (Wien), 1980, 52(3-4): 209-218.
[6]
Tanaka Y, Kohno M, Hashimoto T, et al. Arterial spin labeling imaging correlates with the angiographic and clinical vascularity of vestibular schwannomas[J]. Neuroradiology, 2020, 62(4): 463-471.
[7]
Curtin HD, Hirsch WL Jr. Imaging of acoustic neuromas. 1992[J]. Neurosurg Clin N Am, 2008, 19(2): 175-205, v.
[8]
Strasilla C, Sychra V. Imaging-based diagnosis of vestibular schwannoma[J]. Hno, 2017, 65(5): 373-380.
[9]
Bergamino M, Bonzano L, Levrero F, et al. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors[J]. Phys Med, 2014, 30(6): 635-643.
[10]
Oto A, Yang C, Kayhan A, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis[J]. AJR Am J Roentgenol, 2011, 197(6): 1382-1390.
[11]
Roberts HC, Roberts TP, Brasch RC, et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade[J]. AJNR Am J Neuroradiol, 2000, 21(5): 891-899.
[12]
Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols[J]. J Magn Reson Imaging, 1999, 10(3): 223-232.
[13]
Berman RM, Brown AM, Chang SD, et al. DCE MRI of prostate cancer[J]. Abdom Radiol (NY), 2016, 41(5): 844-853.
[14]
Benshoff ER, Katz BH. Ectopia of the posterior pituitary gland as a normal variant: assessment with MR imaging[J]. AJNR Am J Neuroradiol, 1990, 11(4): 709-712.
[15]
Kim LJ, Lekovic GP, White WL, et al. Preliminary experience with 3-tesla MRI and Cushing’s disease[J]. Skull Base, 2007, 17(4): 273-277.
[16]
刘佩芳,鲍润贤,牛昀,等.乳腺良恶性病变动态增强MRI表现特征与血管生成相关性的初步研究[J].中华放射学杂志, 2002, 36(11): 967-972.
[17]
王霄英,杨德文,蒋学祥. MRI动态增强扫描对垂体微腺瘤的诊断意义[J].中国医学影像技术, 2000, 16(4): 262.
[18]
Takahashi M, Okudera T, Tomanaga M, et al. Angiographic diagnosis of acoustic neurinomas: analysis of 30 lesions[J]. Neuroradiology, 1971, 2(4): 191-200.
[19]
Isebaert S, De Keyzer F, Haustermans K, et al. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology[J]. Eur J Radiol, 2012, 81(3): e217-e222.
[20]
Puech P, Potiron E, Lemaitre L, et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens[J]. Urology, 2009, 74(5): 1094-1099.
[21]
Liu HL, Zong M, Wei H, et al. Differentiation between malignant and benign breast masses: combination of semi-quantitative analysis on DCE-MRI and histogram analysis of ADC maps[J]. Clin Radiol, 2018, 73(5): 460-466.
[22]
Kim SH, Choi MS, Kim MJ, et al. Role of semi-quantitative dynamic contrast-enhanced MR imaging in characterization and grading of prostate cancer[J]. Eur J Radiol, 2017, 94: 154-159.
[23]
Padhani AR, Husband JE. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies[J]. Clin Radiol, 2001, 56(8): 607-620.
[24]
Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI[J]. Magn Reson Med, 2002, 47(3): 601-606.
[1] 付海忠, 李雪梅, 李明辉, 李元冰, 于允圣, 陈永赞. 基于医院用血量大数据的红细胞最佳库存策略研究[J]. 中华卫生应急电子杂志, 2022, 08(05): 280-284.
阅读次数
全文


摘要