切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 225 -229. doi: 10.3877/cma.j.issn.2095-123X.2020.04.006

所属专题: 文献

颅内肿瘤

恶性脑肿瘤的药物投递策略
李涛1, 张辰1, 林雨1, 于胜平1, 明浩朗1, 任炳成1, 马海文1, 张恺2, 杨学军1,()   
  1. 1. 300052 天津,天津医科大学总医院神经外科
    2. 300193 天津,天津中医药大学第一附属医院外科
  • 收稿日期:2020-06-19 出版日期:2020-08-15
  • 通信作者: 杨学军

Drug delivery strategy for malignant brain tumors

Tao Li1, Chen Zhang1, Yu Lin1, Shengping Yu1, Haolang Ming1, Bingcheng Ren1, Haiwen Ma1, Kai Zhang2, Xuejun Yang1,()   

  1. 1. Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
    2. Department of Surgery, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
  • Received:2020-06-19 Published:2020-08-15
  • Corresponding author: Xuejun Yang
引用本文:

李涛, 张辰, 林雨, 于胜平, 明浩朗, 任炳成, 马海文, 张恺, 杨学军. 恶性脑肿瘤的药物投递策略[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 225-229.

Tao Li, Chen Zhang, Yu Lin, Shengping Yu, Haolang Ming, Bingcheng Ren, Haiwen Ma, Kai Zhang, Xuejun Yang. Drug delivery strategy for malignant brain tumors[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(04): 225-229.

恶性胶质瘤是人类最致命的肿瘤之一,尽管目前手术、放射治疗、化学治疗等治疗方式都取得了进展,但是预后不佳。一些恶性胶质瘤的新型化学药物在实验研究研究中效果明显,但临床疗效却大打折扣,因此,恶性脑肿瘤的药物投递方式也需同步发展。本文围绕恶性脑肿瘤的药物投递限制和策略作一综述。

Malignant glioma is one of the most lethal tumors in human beings. Although surgery, radiotherapy and chemotherapy have made progress, the prognosis is poor. Some new chemical drugs of malignant glioma have obvious effect in experimental research, but the clinical effect is greatly reduced. Therefore, the drug delivery mode of malignant brain tumor also needs to be developed simultaneously. This review focuses on the drug delivery limitations and strategies for malignant brain tumors.

[1]
Brem SS, Bierman PJ, Brem H, et al. Central nervous system cancers[J]. J Natl Compr Canc Netw, 2011, 9(4): 352-400.
[2]
Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions[J]. Neuro Oncol, 2020, 22(8): 1073-1113.
[3]
Stukel JM, Caplan MR. Targeted drug delivery for treatment and imaging of glioblastoma multiforme[J]. Expert Opin Drug Deliv, 2009, 6(7): 705-718.
[4]
Schinkel AH. P-glycoprotein, a gatekeeper in the blood-brain barrier[J]. Adv Drug Deliv Rev, 1999, 36(2-3): 179-194.
[5]
Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications[J]. Cell Mol Neurobiol, 2000, 20(2): 217-230.
[6]
Neuwelt EA. Mechanisms of disease: the blood-brain barrier[J]. Neurosurgery, 2004, 54(1): 131-140; discussion 141-132.
[7]
Rapoport SI. Blood-brain barrier in physiology and medicine[M]. New York: Raven press, 1976.
[8]
Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs[J]. J Clin Invest, 1996, 97(11): 2517-2524.
[9]
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41.
[10]
Sarkaria JN, Hu LS, Parney IF, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data[J]. Neuro Oncol, 2018, 20(2): 184-191.
[11]
Leggas M, Adachi M, Scheffer GL, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy[J]. Mol Cell Biol, 2004, 24(17): 7612-7621.
[12]
Breedveld P, Pluim D, Cipriani G, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients [J]. Cancer Res, 2005, 65(7): 2577-2582.
[13]
Bradbury M. The concept of a blood-brain barrier[M]. New York: John Wiley & Sons, 1979.
[14]
Hall WA, Sherr GT. Convection-enhanced delivery of targeted toxins for malignant glioma[J]. Expert Opin Drug Deliv, 2006, 3(3): 371-377.
[15]
Vavra M, Ali MJ, Kang EW, et al. Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery[J]. Neuro Oncol, 2004, 6(2): 104-112.
[16]
Jain RK. Transport of molecules, particles, and cells in solid tumors[J]. Annu Rev Biomed Eng, 1999, 1(1): 241-263.
[17]
Ali MJ, Navalitloha Y, Vavra MW, et al. Isolation of drug delivery from drug effect: problems of optimizing drug delivery parameters[J]. Neuro Oncol, 2006, 8(2): 109-118.
[18]
Jain RK. Barriers to drug delivery in solid tumors[J]. Sci Am, 1994, 271(1): 58-65.
[19]
Rockwell S. Use of hypoxia-directed drugs in the therapy of solid tumors[J]. Semin Oncol, 1992, 19(4 Suppl 11): 29-40.
[20]
Johanson CE, Jones HC. Promising vistas in hydrocephalus and cerebrospinal fluid research[J]. Trends Neurosci, 2001, 24(11): 631-632.
[21]
Rautioa J, Chikhale PJ. Drug delivery systems for brain tumor therapy[J]. Curr Pharm Des, 2004, 10(12): 1341-1353.
[22]
Ghersi-Egea JF, Leininger-Muller B, Cecchelli R, et al. Blood-brain interfaces: relevance to cerebral drug metabolism[J]. Toxicol Lett, 1995, 82-83: 645-653.
[23]
Pardridge WM. Recent advances in blood-brain barrier transport[J]. Annu Rev Pharmacol Toxicol, 1988, 28: 25-39.
[24]
Brem H, Walter KA, Tamargo RJ, et al. Drug delivery to the brain[M]. New York: John Wiley & Sons, 1994: 117-139.
[25]
Sinkula AA, Yalkowsky SH. Rationale for design of biologically reversible drug derivatives: prodrugs[J]. J Pharm Sci, 1975, 64(2): 181-210.
[26]
Stella VJ, Charman WN, Naringrekar VH. Prodrugs. Do they have advantages in clinical practice?[J]. Drugs, 1985, 29(5): 455-473.
[27]
Greig NH, Genka S, Daly EM, et al. Physicochemical and pharmacokinetic parameters of seven lipophilic chlorambucil esters designed for brain penetration[J]. Cancer Chemother Pharmacol, 1990, 25(5): 311-319.
[28]
Genka S, Deutsch J, Shetty UH, et al. Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil[J]. Clin Exp Metastasis, 1993, 11(2): 131-140.
[29]
Aboody KS, Najbauer J, Metz MZ, et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies[J]. Sci Transl Med, 2013, 5(184): 184ra159.
[30]
Doloff JC, Su T, Waxman DJ. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+[J]. BMC Cancer, 2010, 10: 487.
[31]
Khan Z, Knecht W, Willer M, et al. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy[J]. Neuro Oncol, 2010, 12(6): 549-558.
[32]
Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy[J]. Gene Ther, 2008, 15(10): 739-752.
[33]
Dhanda DS, Frey W, Leopold D, et al. Approaches for drug deposition in the human olfactory epithelium[J]. Drug Deliv Technol, 2005, 5(4): 64-72.
[34]
Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration[J]. Neuroscience, 2004, 127(2): 481-496.
[35]
Hashizume R, Ozawa T, Gryaznov SM, et al. New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163[J]. Neuro Oncol, 2008, 10(2): 112-120.
[36]
van Woensel M, Wauthoz N, Rosiere R, et al. Formulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?[J]. Cancers (Basel), 2013, 5(3): 1020-1048.
[37]
Williams PC, Henner WD, Roman-Goldstein S, et al. Toxicity and efficacy of carboplatin and etoposide in conjunction with disruption of the blood-brain tumor barrier in the treatment of intracranial neoplasms[J]. Neurosurgery, 1995, 37(1): 17-28.
[38]
Neuwelt EA, Frenkel EP, Rapoport S, et al. Effect of osmotic blood-brain barrier disruption on methotrexate pharmacokinetics in the dog[J]. Neurosurgery, 1980, 7(1): 36-43.
[39]
Cloughesy TF, Black KL. Pharmacological blood-brain barrier modification for selective drug delivery[J]. J Neurooncol, 1995, 26(2): 125-132.
[40]
Bartus RT, Elliott PJ, Dean RL, et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7[J]. Exp Neurol, 1996, 142(1): 14-28.
[41]
Ford J, Osborn C, Barton T, et al. A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma[J]. Eur J Cancer, 1998, 34(11): 1807-1811.
[42]
Bidros DS, Vogelbaum MA. Novel drug delivery strategies in neuro-oncology[J]. Neurotherapeutics, 2009, 6(3): 539-546.
[43]
Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits[J]. Radiology, 2001, 220(3): 640-646.
[44]
Clement GT, Hynynen K. A non-invasive method for focusing ultrasound through the human skull[J]. Phys Med Biol, 2002, 47(8): 1219-1236.
[45]
Todd N, Angolano C, Ferran C, et al. Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood-brain barrier[J]. J Control Release, 2020, 324: 450-459.
[46]
Sinharay S, Tu TW, Kovacs ZI, et al. In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study[J]. J Neuroinflammation, 2019, 16(1): 155.
[47]
Kovacs ZI, Burks SR, Frank JA. Focused ultrasound with microbubbles induces sterile inflammatory response proportional to the blood brain barrier opening: attention to experimental conditions[J]. Theranostics, 2018, 8(8): 2245-2248.
[48]
Westphal M, Ram Z, Riddle V, et al. Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial[J]. Acta Neurochir(Wien), 2006, 148(3): 269-275.
[49]
DiMeco F, Li KW, Tyler BM, et al. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats[J]. J Neurosurg, 2002, 97(5): 1173-1178.
[50]
Osami K, Yasuhiko T, Yoshihiro M, et al. Local chemotherapy with slowly-releasing anticancer drug-polymers for malignant brain tumors[J]. J Control Release, 1994, 32(1): 1-8.
[51]
Menei P, Venier MC, Gamelin E, et al. Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of glioblastoma: a pilot study[J]. Cancer, 1999, 86(2): 325-330.
[52]
Walter KA, Cahan MA, Gur A, et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma[J]. Cancer Res, 1994, 54(8): 2207-2212.
[53]
Watts MC, Lesniak MS, Burke M, et al. Controlled release of adriamycin in the treatment of malignant glioma[C]. The American Association of Neurological Surgeons Annual Meeting, Denver, CO, 1997.
[54]
Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium[J]. Brain Res, 1995, 680(1-2): 196-206.
[55]
Pollina J, Plunkett RJ, Ciesielski MJ, et al. Intratumoral infusion of topotecan prolongs survival in the nude rat intracranial U87 human glioma model[J]. J Neurooncol, 1998, 39(3): 217-225.
[56]
Varenika V, Dickinson P, Bringas J, et al. Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery[J]. J Neurosurg, 2008, 109(5): 874-880.
[57]
Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain[J]. Proc Natl Acad Sci USA, 1994, 91(6): 2076-2080.
[58]
Walter KA, Tamargo RJ, Olivi A, et al. Intratumoral chemotherapy[J]. Neurosurgery, 1995, 37(6): 1129-1145.
[59]
Blasberg RG. Methotrexate, cytosine arabinoside, and BCNU concentration in brain after ventriculocisternal perfusion[J]. Cancer Treat Rep, 1977, 61(4): 625-631.
[60]
Yamada K, Ushio Y, Hayakawa T, et al. Distribution of radiolabeled1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitros ourea hydrochloride in rat brain tumor: intraarterial versus intravenous administration[J]. Cancer Res, 1987, 47(8): 2123-2128.
[61]
Savaraj N, Lu K, Feun LG, et al. Comparison of CNS penetration, tissue distribution, and pharmacology of VP 16-213 by intracarotid and intravenous administration in dogs[J]. Cancer Invest, 1987, 5(1): 11-16.
[62]
Nakagawa H, Fujita T, Izumimoto S, et al. Cis-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. II: clinical effects[J]. J Neurooncol, 1993, 16(1): 69-76.
[63]
Dickinson PJ, LeCouteur RA, Higgins RJ, et al. Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation[J]. J Neurosurg, 2008, 108(5): 989-998.
[64]
Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes[J]. Proc Natl Acad Sci USA, 1996, 93(24): 14164-14169.
[65]
Krishnamoorthy B, Karanam V, Chellan VR, et al. Polymersomes as an effective drug delivery system for glioma-a review[J]. J Drug Target, 2014, 22(6): 469-477.
[66]
Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers[J]. Biomaterials, 2007, 28(33): 4947-4967.
[67]
Corem-Salkmon E, Ram Z, Daniels D, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles[J]. Int J Nanomedicine, 2011, 6: 1595-1602.
[68]
Hassan EE, Gallo JM. Targeting anticancer drugs to the brain. I: enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres[J]. J Drug Target, 1993, 1(1): 7-14.
[1] 邱涛, 周江桥, 陈忠宝, 马枭雄, 张龙, 邹寄林, 陈永连. 脑肿瘤供者供肾移植短期临床研究[J]. 中华移植杂志(电子版), 2018, 12(01): 5-8.
[2] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[3] 陈立华, 孙恺, 陈文锦, 夏勇, 张洪钿, 徐如祥. 儿童髓母细胞瘤的风险分层治疗[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 242-246.
[4] 许宏武, 周文, 杨文鹏, 庄泽锐, 顾嘉杰, 陈剑. 后颅窝肿瘤并阻塞性脑积水围手术期Ommaya储液囊植入术应用体会[J]. 中华神经创伤外科电子杂志, 2017, 03(02): 85-88.
[5] 郭阳, 徐如祥. 脑肿瘤干细胞的发育相关信号通路[J]. 中华神经创伤外科电子杂志, 2015, 01(05): 41-45.
[6] 吕东, 朱盛, 胡秋平, 邹松, 黄文强, 唐全进, 黄海. 基于增强CT与增强MRI融合的3D打印导板辅助脑肿瘤穿刺活检一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 251-254.
[7] 王運達, 孟欣, 王浩聪, 刘文卿, 辛涛. 基于深度学习神经网络Mask R-CNN脑肿瘤的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 120-123.
[8] 陈立华, 孙恺, 夏勇, 魏帆, 黄宏志, 徐如祥. 儿童髓母细胞瘤的个体化治疗及预后相关因素分析[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 221-226.
[9] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[10] 李倩倩, 崔艾琳, 丁新华, 童明辉, 吴婷婷, 王佳冰, 雷海燕. 多种术中超声模式在颅脑肿瘤切除中的应用[J]. 中华临床医师杂志(电子版), 2017, 11(14): 2042-2045.
阅读次数
全文


摘要