切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 230 -233. doi: 10.3877/cma.j.issn.2095-123X.2020.04.007

所属专题: 文献

颅内肿瘤

基于人工智能的影像组学与数字病理学研究在脑胶质瘤诊断中的应用进展
曹勇勇1, 付饶2, 吕宏尧3, 易旻晗4, 尹宏鹏4, 吕胜青2,()   
  1. 1. 400030 重庆,重庆大学医学院
    2. 400037 重庆,重庆陆军军医大学新桥医院神经外科
    3. 610000 成都,四川大学华西公共卫生学院预防医学系
    4. 400030 重庆,重庆大学自动化学院
  • 收稿日期:2020-07-21 出版日期:2020-08-15
  • 通信作者: 吕胜青

Advances in the application of artificial intelligence-based radiomics and digital pathology in the diagnosis of glioma

Yongyong Cao1, Rao Fu2, Hongyao Lyu3, Minhan Yi4, Hongpeng Yin4, Shengqing Lyu2,()   

  1. 1. School of Medicine, Chongqing University, Chongqing 400030, China
    2. Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
    3. Department of Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu 610000, China
    4. Department of Automation, Chongqing University, Chongqing 400030, China
  • Received:2020-07-21 Published:2020-08-15
  • Corresponding author: Shengqing Lyu
引用本文:

曹勇勇, 付饶, 吕宏尧, 易旻晗, 尹宏鹏, 吕胜青. 基于人工智能的影像组学与数字病理学研究在脑胶质瘤诊断中的应用进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 230-233.

Yongyong Cao, Rao Fu, Hongyao Lyu, Minhan Yi, Hongpeng Yin, Shengqing Lyu. Advances in the application of artificial intelligence-based radiomics and digital pathology in the diagnosis of glioma[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(04): 230-233.

随着计算效能的指数级增长、大数据时代的到来以及"医工结合"等新学科交叉的兴起,人工智能(AI)在医学领域开启了一个全新的时代。AI可应用于疾病诊断、数据分析、临床决策等方面。脑胶质瘤的精准诊断和病理分级一直以来都是临床工作中的一个难点。本文围绕AI在脑胶质瘤影像诊断与病理分级中的应用、前景与挑战等方面进行综述。

With the exponential growth of computing power, the arrival of the era of big data and the rise of new disciplines such as "medical-engineering combination" , artificial intelligence (AI) has opened a new era in the field of medicine. AI can be applied to disease diagnosis, data analysis, clinical decision-making and many other aspects. Accurate diagnosis and pathological grading of glioma has always been a difficult point in clinic. In this paper, the application, prospect and challenge of AI in glioma imaging diagnosis and pathological grading are reviewed.

[1]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820.
[2]
Wu CC, Jain R, Neto L, et al. MR imaging phenotype correlates with extent of genome-wide copy number abundance in IDH mutant gliomas[J]. Neuroradiology, 2019, 61(9): 1023-1031.
[3]
Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2016, 375(2): 263-273.
[4]
Lawrence DR, Palacios-González C, Harris J. Artificial intelligence[J]. Camb Q Healthc Ethics, 2016, 25(2): 250-261.
[5]
Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics[J]. Genome Med, 2019, 11(1): 70.
[6]
Peek N, Combi C, Marin R, et al. Thirty years of artificial intelligence in medicine (AIME) conferences: a review of research themes[J]. Artif Intell Med, 2015, 65(1): 61-73.
[7]
Adlassnig KP. Artificial-intelligence-augmented systems[J]. Artif Intell Med, 2002, 24(1): 1-4.
[8]
Ngu JC, Sim S, Yusof S, et al. Insight into the da Vinci®Xi-technical notes for single-docking left-sided colorectal procedures[J]. Int J Med Robot, 2017, 13(4): 10.1002/rcs.1798.
[9]
Sirintrapun SJ, Lopez AM. Telemedicine in cancer care[J]. Am Soc Clin Oncol Educ Book, 2018, 38: 540-545.
[10]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
[11]
Ben-Cohen A, Mechrez R, Yedidia N, et al. Improving CNN training using disentanglement for liver lesion classification in CT[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 886-889.
[12]
Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters[J]. Biostatistics, 2019, 20(2): 273-286.
[13]
Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety[J]. Trends Pharmacol Sci, 2019, 40(9): 624-635.
[14]
Carelli L, Solca F, Faini A, et al. Brain-computer interface for clinical purposes: cognitive assessment and rehabilitation[J]. Biomed Res Int, 2017, 2017: 1695290.
[15]
Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine[J]. Mayo Clin Proc, 2012, 87(3): 268-279.
[16]
Baek HJ, Chang MH, Heo J, et al. Enhancing the usability of brain-computer interface systems[J]. Comput Intell Neurosci, 2019, 2019: 5427154.
[17]
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
[18]
Longo DL. Tumor heterogeneity and personalized medicine[J]. N Engl J Med, 2012, 366(10): 956-957.
[19]
Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis[J]. Eur Radiol Exp, 2018, 2(1): 36.
[20]
Pope WB, Qiao XJ, Kim HJ, et al. Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center study[J]. J Neurooncol, 2012, 108(3): 491-498.
[21]
吴亚平,刘博,顾建钦,等.基于影像组学的脑胶质瘤分级方法[J].中华放射学杂志, 2017, 51(12): 902-905.
[22]
Hendriks EJ, Habets EJJ, Taphoorn MJB, et al. Linking late cognitive outcome with glioma surgery location using resection cavity maps[J]. Hum Brain Mapp, 2018, 39(5): 2064-2074.
[23]
Skogen K, Schulz A, Dormagen JB, et al. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas[J]. Eur J Radiol, 2016, 85(4): 824-829.
[24]
刘锐,赵旭,赵东利,等.基于MIM软件行CT-MRI图像融合技术在脑胶质瘤精确放疗中的应用[J].西安交通大学学报(医学版), 2020, 41(5): 668-672.
[25]
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
[26]
Yip SS, Aerts HJ. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166.
[27]
Robertson S, Azizpour H, Smith K, et al. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence[J]. Transl Res, 2018, 194: 19-35.
[28]
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-e261.
[29]
Rathore S, Niazi T, Iftikhar MA, et al. Glioma grading via analysis of digital pathology images using machine learning[J]. Cancers (Basel), 2020, 12(3): 578.
[30]
Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities[J]. J Pathol Inform, 2018, 9: 38.
[31]
Matsui Y, Maruyama T, Nitta M, et al. Prediction of lower-grade glioma molecular subtypes using deep learning[J]. J Neurooncol, 2020, 146(2): 321-327.
[32]
Shaver MM, Kohanteb PA, Chiou C, et al. Optimizing neuro-oncology imaging: a review of deep learning approaches for glioma imaging[J]. Cancers (Basel), 2019, 11(6): 829.
[33]
Sotoudeh H, Shafaat O, Bernstock JD, et al. Artificial intelligence in the management of glioma: era of personalized medicine[J]. Front Oncol, 2019, 9: 768.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[4] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[7] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[8] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[9] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[10] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[11] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[12] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[13] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[14] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要