切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 230 -233. doi: 10.3877/cma.j.issn.2095-123X.2020.04.007

所属专题: 文献

颅内肿瘤

基于人工智能的影像组学与数字病理学研究在脑胶质瘤诊断中的应用进展
曹勇勇1, 付饶2, 吕宏尧3, 易旻晗4, 尹宏鹏4, 吕胜青2,()   
  1. 1. 400030 重庆,重庆大学医学院
    2. 400037 重庆,重庆陆军军医大学新桥医院神经外科
    3. 610000 成都,四川大学华西公共卫生学院预防医学系
    4. 400030 重庆,重庆大学自动化学院
  • 收稿日期:2020-07-21 出版日期:2020-08-15
  • 通信作者: 吕胜青

Advances in the application of artificial intelligence-based radiomics and digital pathology in the diagnosis of glioma

Yongyong Cao1, Rao Fu2, Hongyao Lyu3, Minhan Yi4, Hongpeng Yin4, Shengqing Lyu2,()   

  1. 1. School of Medicine, Chongqing University, Chongqing 400030, China
    2. Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
    3. Department of Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu 610000, China
    4. Department of Automation, Chongqing University, Chongqing 400030, China
  • Received:2020-07-21 Published:2020-08-15
  • Corresponding author: Shengqing Lyu
引用本文:

曹勇勇, 付饶, 吕宏尧, 易旻晗, 尹宏鹏, 吕胜青. 基于人工智能的影像组学与数字病理学研究在脑胶质瘤诊断中的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 230-233.

Yongyong Cao, Rao Fu, Hongyao Lyu, Minhan Yi, Hongpeng Yin, Shengqing Lyu. Advances in the application of artificial intelligence-based radiomics and digital pathology in the diagnosis of glioma[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(04): 230-233.

随着计算效能的指数级增长、大数据时代的到来以及"医工结合"等新学科交叉的兴起,人工智能(AI)在医学领域开启了一个全新的时代。AI可应用于疾病诊断、数据分析、临床决策等方面。脑胶质瘤的精准诊断和病理分级一直以来都是临床工作中的一个难点。本文围绕AI在脑胶质瘤影像诊断与病理分级中的应用、前景与挑战等方面进行综述。

With the exponential growth of computing power, the arrival of the era of big data and the rise of new disciplines such as "medical-engineering combination" , artificial intelligence (AI) has opened a new era in the field of medicine. AI can be applied to disease diagnosis, data analysis, clinical decision-making and many other aspects. Accurate diagnosis and pathological grading of glioma has always been a difficult point in clinic. In this paper, the application, prospect and challenge of AI in glioma imaging diagnosis and pathological grading are reviewed.

[1]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820.
[2]
Wu CC, Jain R, Neto L, et al. MR imaging phenotype correlates with extent of genome-wide copy number abundance in IDH mutant gliomas[J]. Neuroradiology, 2019, 61(9): 1023-1031.
[3]
Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2016, 375(2): 263-273.
[4]
Lawrence DR, Palacios-González C, Harris J. Artificial intelligence[J]. Camb Q Healthc Ethics, 2016, 25(2): 250-261.
[5]
Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics[J]. Genome Med, 2019, 11(1): 70.
[6]
Peek N, Combi C, Marin R, et al. Thirty years of artificial intelligence in medicine (AIME) conferences: a review of research themes[J]. Artif Intell Med, 2015, 65(1): 61-73.
[7]
Adlassnig KP. Artificial-intelligence-augmented systems[J]. Artif Intell Med, 2002, 24(1): 1-4.
[8]
Ngu JC, Sim S, Yusof S, et al. Insight into the da Vinci®Xi-technical notes for single-docking left-sided colorectal procedures[J]. Int J Med Robot, 2017, 13(4): 10.1002/rcs.1798.
[9]
Sirintrapun SJ, Lopez AM. Telemedicine in cancer care[J]. Am Soc Clin Oncol Educ Book, 2018, 38: 540-545.
[10]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
[11]
Ben-Cohen A, Mechrez R, Yedidia N, et al. Improving CNN training using disentanglement for liver lesion classification in CT[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 886-889.
[12]
Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters[J]. Biostatistics, 2019, 20(2): 273-286.
[13]
Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety[J]. Trends Pharmacol Sci, 2019, 40(9): 624-635.
[14]
Carelli L, Solca F, Faini A, et al. Brain-computer interface for clinical purposes: cognitive assessment and rehabilitation[J]. Biomed Res Int, 2017, 2017: 1695290.
[15]
Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine[J]. Mayo Clin Proc, 2012, 87(3): 268-279.
[16]
Baek HJ, Chang MH, Heo J, et al. Enhancing the usability of brain-computer interface systems[J]. Comput Intell Neurosci, 2019, 2019: 5427154.
[17]
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
[18]
Longo DL. Tumor heterogeneity and personalized medicine[J]. N Engl J Med, 2012, 366(10): 956-957.
[19]
Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis[J]. Eur Radiol Exp, 2018, 2(1): 36.
[20]
Pope WB, Qiao XJ, Kim HJ, et al. Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center study[J]. J Neurooncol, 2012, 108(3): 491-498.
[21]
吴亚平,刘博,顾建钦,等.基于影像组学的脑胶质瘤分级方法[J].中华放射学杂志, 2017, 51(12): 902-905.
[22]
Hendriks EJ, Habets EJJ, Taphoorn MJB, et al. Linking late cognitive outcome with glioma surgery location using resection cavity maps[J]. Hum Brain Mapp, 2018, 39(5): 2064-2074.
[23]
Skogen K, Schulz A, Dormagen JB, et al. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas[J]. Eur J Radiol, 2016, 85(4): 824-829.
[24]
刘锐,赵旭,赵东利,等.基于MIM软件行CT-MRI图像融合技术在脑胶质瘤精确放疗中的应用[J].西安交通大学学报(医学版), 2020, 41(5): 668-672.
[25]
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
[26]
Yip SS, Aerts HJ. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166.
[27]
Robertson S, Azizpour H, Smith K, et al. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence[J]. Transl Res, 2018, 194: 19-35.
[28]
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-e261.
[29]
Rathore S, Niazi T, Iftikhar MA, et al. Glioma grading via analysis of digital pathology images using machine learning[J]. Cancers (Basel), 2020, 12(3): 578.
[30]
Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities[J]. J Pathol Inform, 2018, 9: 38.
[31]
Matsui Y, Maruyama T, Nitta M, et al. Prediction of lower-grade glioma molecular subtypes using deep learning[J]. J Neurooncol, 2020, 146(2): 321-327.
[32]
Shaver MM, Kohanteb PA, Chiou C, et al. Optimizing neuro-oncology imaging: a review of deep learning approaches for glioma imaging[J]. Cancers (Basel), 2019, 11(6): 829.
[33]
Sotoudeh H, Shafaat O, Bernstock JD, et al. Artificial intelligence in the management of glioma: era of personalized medicine[J]. Front Oncol, 2019, 9: 768.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[3] 王晗宇, 张司可, 张羽, 万欣, 贺秋霞, 李明明, 杨秀华. 超声造影在脑胶质瘤切除术术中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 755-760.
[4] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[5] 吴佩琪. 乳腺癌瘤周影像组学研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 301-304.
[6] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[9] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[10] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[11] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[12] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[13] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[14] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要