切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 234 -238. doi: 10.3877/cma.j.issn.2095-123X.2020.04.008

所属专题: 文献

颅内肿瘤

肿瘤治疗电场治疗胶质母细胞瘤的研究进展
曹奕强1, 王永刚1, 龙江1,()   
  1. 1. 650032 昆明,昆明医科大学第一附属医院神经外科
  • 收稿日期:2020-07-25 出版日期:2020-08-15
  • 通信作者: 龙江

Research progress of tumor treating fields in the treatment of glioblastoma

Yiqiang Cao1, Yonggang Wang1, Jiang Long1,()   

  1. 1. Department of Neurosurgery, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
  • Received:2020-07-25 Published:2020-08-15
  • Corresponding author: Jiang Long
引用本文:

曹奕强, 王永刚, 龙江. 肿瘤治疗电场治疗胶质母细胞瘤的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 234-238.

Yiqiang Cao, Yonggang Wang, Jiang Long. Research progress of tumor treating fields in the treatment of glioblastoma[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(04): 234-238.

肿瘤治疗电场(TTF)是一种低强度中频交变电场,具有干扰细胞有丝分裂过程的特性,在体外实验中证实其可破坏快速分裂的肿瘤细胞。目前相关临床治疗设备已被批准用于复发胶质母细胞瘤(GBM)或新诊断GBM的治疗。随着研究的深入及临床实践的积累,多项临床随机对照试验证实TTF可提高GBM患者的术后生存时间,且不良反应轻微。因此TTF治疗被我国国家卫生健康委员会及美国国立综合癌症网络写入治疗指南,成为继手术、化学治疗、放射治疗后第4种公认有效的胶质瘤治疗手段。

Tumor therapeutic electric field (TTF) is a kind of low-intensity medium frequency alternating electric field, which has the characteristics of interfering with the mitotic process of cells. It has been proved in vitro that TTF can destroy rapidly dividing tumor cells. At present, the relevant clinical treatment equipment has been approved for the treatment of recurrent glioblastoma (GBM) or newly diagnosed GBM. With the deepening of research and the accumulation of clinical practice, a number of clinical randomized controlled trials have confirmed that TTF can significantly improve the postoperative survival time of GBM patients, and the adverse reactions are mild. Therefore, TTF treatment has been written into the clinical practice guidelines by the National Health Commission Medical Administration of China and the National Comprehensive Cancer Network, and has become the fourth recognized effective treatment for glioma after surgery, chemotherapy and radiotherapy.

[26]
Mrugala MM, Engelhard HH, Dinh Tran D, et al. Clinical practice experience with NovoTTF-100ATM system for glioblastoma: the patient registry dataset (PRiDe)[J]. Semin Oncol, 2014, 41 Suppl 6: S4-S13.
[27]
Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial[J]. JAMA, 2017, 318(23): 2306-2316.
[28]
Giladi M, Munster M, Schneiderman RS, et al. Tumor treating fields (TTfields) delay DNA damage repair following radiation treatment of glioma cells[J]. Radiat Oncol, 2017, 12(1): 206.
[29]
Guberina N, Pottgen C, Kebir S, et al. Combined radiotherapy and concurrent tumor treating fields (TTFields) for glioblastoma: dosimetric consequences on non-coplanar IMRT as initial results from a phase I trial[J]. Radiat Oncol, 2020, 15(1): 83.
[30]
Lazaridis L, Schafer N, Teuber-Hanselmann S, et al. Tumour treating fields (TTfields) in combination with lomustine and temozolomide in patients with newly diagnosed glioblastoma[J]. J Cancer Res Clin Oncol, 2020, 146(3): 787-792.
[31]
Stewart G, Eugene H, Lai JS, et al. Pdct-07. Feasibility trial of ttfields (tumor treating fields) for children with recurrent or progressive supratentorial high-grade glioma (HGG) and ependymoma: a pediatric brain tumor consortium study: PBTC-048[J]. Neuro Oncol, 2018, 20(Suppl 6): vi201-vi202
[32]
Tran D, Warren S, Friedman W, et al. Path-27. Identifying the genetic signature of response in a phase II study of tumor treating fields in recurrent glioblastoma[J]. Neuro Oncol, 2018, 20(Suppl 6): vi164.
[33]
Bhr O, Tabatabai G, Fietkau R, et al. P14.63 The use of TTFields for newly diagnosed GBM patients in Germany in routine clinical care (TIGER: TTFields in Germany in routine clinical care)[J]. Neuro Oncol, 2019, 21(Suppl 3): iii82.
[34]
Wick W. TTFelds: where does all the skepticism come from?[J]. Neuro Oncol, 2016, 18(3): 303-305.
[35]
Cloughesy TF, Lassman AB. NovoTTF: where to go from here?[J]. Neuro Oncol, 2017, 19(5): 605-608.
[36]
Burri SH, Gondi V, Brown PD, et al. The evolving role of tumor treating fields in managing glioblastoma: guide for oncologists[J]. Am J Clin Oncol, 2018, 41(2): 191-196.
[37]
Bernard-Arnoux F, Lamure M, Ducray F, et al. The cost-effectiveness of tumor-treating fields therapy in patients with newly diagnosed glioblastoma[J]. Neuro Oncol, 2016, 18(8): 1129-1136.
[38]
Toms SA, Kim CY, Nicholas G, et al. Increased compliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma: a subgroup analysis of the EF-14 phase III trial[J]. J Neurooncol, 2019, 141(2): 467-473.
[1]
Brat DJ, Prayson RA, Ryken TC, et al. Diagnosis of malignant glioma: role of neuropathology[J]. J Neurooncol, 2008, 89(3): 287-311.
[2]
Barnholtz-Sloan JS, Ostrom QT, Cote D. Epidemiology of brain tumors[J]. Neurol Clin, 2018, 36(3): 395-419.
[3]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[4]
Weller M, Cloughesy T, Perry JR, et al. Standards of care for treatment of recurrent glioblastoma--are we there yet?[J]. Neuro Oncol, 2013, 15(1): 4-27.
[5]
Mun EJ, Babiker HM, Weinberg U, et al. Tumor-treating fields: a fourth modality in cancer treatment[J]. Clin Cancer Res, 2018, 24(2): 266-275.
[6]
Chaudhry A, Benson L, Varshaver M, et al. NovoTTFTM-100A system (tumor treating fields) transducer array layout planning for glioblastoma: a NovoTALTM system user study[J]. World J Surg Oncol, 2015, 13: 316.
[7]
Stupp R, Wong ET, Kanner AA, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality[J]. Eur J Cancer, 2012, 48(14): 2192-2202.
[8]
Nabors LB, Portnow J, Ahluwalia M, et al. Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(11): 1537-1570.
[9]
国家卫生健康委员会医政医管局.脑胶质瘤诊疗规范(2018年版)[J].中华神经外科杂志, 2019, 35(3): 217-239.
[10]
Kirson ED, Dbaly V, Tovarys F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors[J]. Proc Natl Acad Sci USA, 2007, 104(24): 10152-10157.
[11]
Salzberg M, Kirson E, Palti Y, et al. A pilot study with very low-intensity, intermediate-frequency electric fields in patients with locally advanced and/or metastatic solid tumors[J]. Onkologie, 2008, 31(7): 362-365.
[12]
Kirson ED, Gurvich Z, Schneiderman R, et al. Disruption of cancer cell replication by alternating electric fields[J]. Cancer Res, 2004, 64(9): 3288-3295.
[13]
Gutin PH, Wong ET. Noninvasive application of alternating electric fields in glioblastoma: a fourth cancer treatment modality[J]. Am Soc Clin Oncol Educ Book, 2012: 126-131.
[14]
Gera N, Yang A, Holtzman TS, et al. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit[J]. PLoS One, 2015, 10(5): e0125269.
[15]
Wenger C, Salvador R, Basser PJ, et al. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study[J]. Phys Med Biol, 2015, 60(18): 7339-7357.
[16]
Kim CY, Paek SH, Nam DH, et al. Tumor treating fields plus temozolomide for newly diagnosed glioblastoma: a sub-group analysis of Korean patients in the EF-14 phase 3 trial[J]. J Neurooncol, 2020, 146(3): 399-406.
[17]
Karanam NK, Srinivasan K, Ding L, et al. Tumor-treating fields elicit a conditional vulnerability to ionizing radiation via the downregulation of BRCA1 signaling and reduced DNA double-strand break repair capacity in non-small cell lung cancer cell lines[J]. Cell Death Dis, 2017, 8(3): e2711.
[18]
Karanam NK, Ding L, Aroumougame A, et al. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: implications for cancer therapy[J]. Transl Res, 2020, 217: 33-46.
[19]
Shteingauz A, Porat Y, Voloshin T, et al. AMPK-dependent autophagy upregulation serves as a survival mechanism in response to tumor treating fields (TTfields)[J]. Cell Death Dis, 2018, 9(11): 1074.
[20]
Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTfields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy[J]. Cancer Immunol Immunother, 2020, 69(7): 1191-1204.
[21]
Kim EH, Song HS, Yoo SH, et al. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis[J]. Oncotarget, 2016, 7(40): 65125-65136.
[22]
Chang E, Patel CB, Pohling C, et al. Tumor treating fields increases membrane permeability in glioblastoma cells[J]. Cell Death Discov, 2018, 4: 113.
[23]
Winkler F, Osswald M, Wick W. Anti-angiogenics: their role in the treatment of glioblastoma[J]. Oncol Res Treat, 2018, 41(4): 181-186.
[24]
Kochar AS, Madhavan M, Manjila S, et al. Contemporary updates on clinical trials of antiangiogenic agents in the treatment of glioblastoma multiforme[J]. Asian J Neurosurg, 2018, 13(3): 546-554.
[25]
Akers KG, Martinez-Canabal A, Restivo L, et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy[J]. Science, 2014, 344(6184): 598-602.
[1] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[2] 李琦, 朱晗玉, 徐莉, 韩秋霞, 闫景瑶, 赵焕焕, 丁潇楠, 范秋灵. 足细胞损伤时细胞周期调控及MDM2-p53通路作用的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(04): 176-180.
[3] 冯巍, 袁喜平, 胡丙宇, 刘金涛, 商东升. 外伤后进展性胶质母细胞瘤一例报道并文献复习[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 59-60.
[4] 周兴旺, 刘艳辉. 老年胶质母细胞瘤的治疗进展[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 321-324.
[5] 孙明阳, 刘艳坤, 陈思, 李玉凤, 李玉辉. NHE1抑制剂改善胶质母细胞瘤细胞对替莫唑胺耐药性的研究[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 261-265.
[6] 林发牧, 邓燕婷, 梁玉明, 简志聪, 邓妙峰, 陈耿树, 麦剑培, 钱卫添, 元少鹏, 胡建军. CLSPN在胶质瘤中的表达及生物学功能[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 235-241.
[7] 张婵, 薛强, 田锐锋, 陈晓燕. Kir4.1在恶性胶质瘤中的表达及其潜在作用:数据库结合文献分析[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 224-234.
[8] 李玉辉, 赵喜庆, 陈思, 刘岩, 刘艳坤, 李玉凤. 阻断NHE1抑制人胶质母细胞瘤细胞增殖和侵袭的研究[J]. 中华神经创伤外科电子杂志, 2020, 06(01): 39-43.
[9] 李玉辉, 赵喜庆, 陆丽娟, 刘艳坤, 刘岩, 胡万宁, 李玉凤. β-TrCP1和HAUSP影响胶质母细胞瘤细胞增殖和侵袭并调控UHRF1蛋白水平[J]. 中华神经创伤外科电子杂志, 2019, 05(04): 233-238.
[10] 欧海荣, 梁仔, 龙霄翱, 覃木秀, 杨燕飞. JAZF1对胶质母细胞瘤侵袭和迁徙的影响及分子机制研究[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 168-172.
[11] 贾伟强, 王兆涛, 徐如祥. 毛蕊花糖苷上调SHP1表达抑制STAT3磷酸化治疗胶质母细胞瘤的分子机制研究[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 285-293.
[12] 李彦钊, 张绪新, 孙晶, 郎明非, 任刚, 邓东风. 基于微流控平台的胶质母细胞瘤干细胞中miRNA-874表达的研究[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 205-208.
[13] 刘娟, 朱吉高, 王立兴, 沈力, 傅剑雄. 增强磁共振成像纹理参数对胶质母细胞瘤、原发性中枢神经系统淋巴瘤和单发转移瘤的鉴别诊断价值[J]. 中华消化病与影像杂志(电子版), 2021, 11(02): 61-66.
[14] 林敏, 宋璐, 秦书明, 侯刚. 胶质肉瘤五例临床病理分析及文献复习[J]. 中华临床医师杂志(电子版), 2019, 13(06): 473-477.
[15] 叶飞龙, 杨冠英, 王伟. 对流增强给药治疗胶质母细胞瘤的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 287-292.
阅读次数
全文


摘要