切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2021, Vol. 11 ›› Issue (04) : 242 -245. doi: 10.3877/cma.j.issn.2095-123X.2021.04.011

临床研究

可视化内镜颅底解剖训练对神经外科青年医师教学的价值研究
陈伟1, 李瑞春1,(), 鱼潇1, 王茂德1, 荆江鹏1, 王宁1   
  1. 1. 710061 西安,西安交通大学第一附属医院神经外科
  • 收稿日期:2021-05-28 出版日期:2021-08-15
  • 通信作者: 李瑞春

Research on the value of visualized endoscopic skull base anatomy training for young neurosurgery doctors

Wei Chen1, Ruichun Li1,(), Xiao Yu1, Maode Wang1, Jiangpeng Jing1, Ning Wang1   

  1. 1. Department of Neurosurgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
  • Received:2021-05-28 Published:2021-08-15
  • Corresponding author: Ruichun Li
引用本文:

陈伟, 李瑞春, 鱼潇, 王茂德, 荆江鹏, 王宁. 可视化内镜颅底解剖训练对神经外科青年医师教学的价值研究[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 242-245.

Wei Chen, Ruichun Li, Xiao Yu, Maode Wang, Jiangpeng Jing, Ning Wang. Research on the value of visualized endoscopic skull base anatomy training for young neurosurgery doctors[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2021, 11(04): 242-245.

目的

探讨可视化内镜颅底解剖训练对提高神经外科青年医师相关临床应用解剖水平的价值。

方法

对2020年8月至2021年4月于西安交通大学第一附属医院神经外科进修医师进行颅底内镜解剖教学评估。进修医师年龄范围26~32岁,神经外科专科工作1~4年,按随机数字表法分为试验组和对照组。试验组进行可视化内镜颅底解剖训练,对照组进行常规内镜颅底解剖训练,然后进入临床技能测试评分,测试按照设定的评分标准进行量化考核。

结果

22名男性神经外科进修医师纳入研究,试验组10人,对照组12人,2组医师的年龄和专科工作时间比较,差异无统计学意义(P>0.05)。病变影像学资料的阅读和手术计划能力,试验组高于对照组;关键重要解剖结构的认识和预判能力比较,试验组高于对照组;最后总体评分试验组优于对照组,差异均具有统计学意义(P<0.05)。

结论

可视化内镜颅底解剖训练比传统方法对神经外科青年医师的培养更加有效。

Objective

To explore the value of visualized endoscopic skull base anatomy training for improving the level of relevant clinical anatomy of young neurosurgeons.

Methods

From August 2020 to April 2021, the refresher neurosurgery physicians (aged from 26-32 years old, working in Neurosurgery for 1-4 years) in Neurosurgery Department of First Affiliated Hospital of Xi’an Jiaotong University were trained in skull base endoscopic anatomy. They were divided into experimental and control groups by the random number table. The experimental group received visualized endoscopic skull base anatomy training, and the control group received conventional endoscopic skull base anatomy training. Then all of them underwent the clinical skill test. The test is quantitatively assessed in accordance with the scoring standards set by the department.

Results

Twenty-two male neurosurgery fellows were included in the study, with 10 in the experimental group and 12 in the control group. There was no statistical difference between the two groups in age and professional working time (P>0.05). The ability of imaging analysis and surgical planning was higher in the experimental group than that in the control group (P<0.05); the ability of understanding and predicting essential anatomical structures was better in the experimental group than that in the control group (P<0.05); the final overall score of the experimental group was better than the control group (P<0.05); the differences between the two groups were statistically significant (P<0.05).

Conclusion

Visualized endoscopic skull base anatomy training is more effective than traditional methods for young neurosurgeons.

表1 内镜经鼻颅底解剖学习内容
图1 神经导航系统辅助下完成经鼻鞍底解剖过程学习效果评价
表2 学习效果评价内容和方法
表3 2组医师的年龄和神经外科工作时间比较[M(Q25,Q75)(平均秩次)]
表4 2组患者的学习评分比较[M(Q25,Q75)(平均秩次)]
[1]
Eseonu CI, ReFaey K, Garcia O, et al. Comparative cost analysis of endoscopic versus microscopic endonasal transsphenoidal surgery for pituitary adenomas[J]. J Neurol Surg B Skull Base, 2018, 79(2): 131-138.
[2]
de Divitiis E, Laws ER, Giani U, et al. The current status of endoscopy in transsphenoidal surgery: an international survey[J]. World Neurosurg, 2015, 83(4): 447-454.
[3]
Engel DC, Ferrari A, Tasman AJ, et al. A basic model for training of microscopic and endoscopic transsphenoidal pituitary surgery: the egghead[J]. Acta Neurochir (Wien), 2015, 157(10): 1771-1777.
[4]
Hara T, Zachariah MA, Li R, et al. Suction mask device: a simple, inexpensive, and effective method of reducing spread of aerosolized particles during endoscopic endonasal surgery in the era of COVID-19[J]. J Neurosurg, 2021, online ahead of print.
[5]
Kasemsiri P, Solares CA, Carrau RL, et al. Endoscopic endonasal transpterygoid approaches: anatomical landmarks for planning the surgical corridor[J]. Laryngoscope, 2013, 123(4): 811-815.
[6]
Fernandez-Miranda JC, Zwagerman NT, Abhinav K, et al. Cavernous sinus compartments from the endoscopic endonasal approach: anatomical considerations and surgical relevance to adenoma surgery[J]. J Neurosurg, 2018, 129(2): 430-441.
[7]
Ferrareze Nunes C, Lieber S, Truong HQ, et al. Endoscopic endonasal transoculomotor triangle approach for adenomas invading the parapeduncular space: surgical anatomy, technical nuances, and case series[J]. J Neurosurg, 2018, online ahead of print.
[8]
Kassam AB, Prevedello DM, Carrau RL, et al. Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients[J]. J Neurosurg, 2011, 114(6): 1544-1568.
[9]
Okuda T, Kataoka K, Kato A. Training in endoscopic endonasal transsphenoidal surgery using a skull model and eggs[J]. Acta Neurochir (Wien), 2010, 152(10): 1801-1804.
[10]
鱼潇,高珂,王拓, 等. 实验室培训对初期神经内镜技术教学的价值探讨[J]. 继续医学教育, 2019, 33(8): 5-7.
[11]
Li L, London NR Jr, Prevedello DM, et al. Anatomy based corridors to the infratemporal fossa: implications for endoscopic approaches[J]. Head Neck, 2020, 42(5): 846-853.
[12]
Martínez-Pérez R, Albonette-Felicio T, Hardesty DA, et al. Comparative anatomical analysis between the minipterional and supraorbital approaches[J]. J Neurosurg, 2020, 134(3): 1276-1284.
[13]
Li L, London NR Jr, Prevedello DM, et al. Endonasal endoscopic transpterygoid approach to the upper parapharyngeal space[J]. Head Neck, 2020, 42(9): 2734-2740.
[14]
Chartrain AG, Kellner CP, Fargen KM, et al. A review and comparison of three neuronavigation systems for minimally invasive intracerebral hemorrhage evacuation[J]. J Neurointerv Surg, 2018, 10(1): 66-74.
[15]
Fick T, van Doormaal JAM, Hoving EW, et al. Current accuracy of augmented reality neuronavigation systems: systematic review and meta-analysis[J]. World Neurosurg, 2021, 146: 179-188.
[1] 田发兰, 陈见中, 扎西卓玛, 喻定刚. 三维可视化技术在复杂泡型肝包虫病治疗中的临床应用[J]. 中华普通外科学文献(电子版), 2023, 17(04): 257-261.
[2] 徐耀博, 吴斌全. 三维可视化技术结合术中超声在可切除肝癌腹腔镜手术的应用[J]. 中华普通外科学文献(电子版), 2022, 16(04): 273-277.
[3] 齐普良, 田青山, 马丽娜, 李彩霞, 阿吉德. ICG示踪联合三维可视化技术指导下改良右半肝切除术治疗肝细胞癌的回顾性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 162-166.
[4] 王斌, 王静, 黄赞胜, 王苹, 王创业, 张硕辛, 秦蘅, 孙晓容, 吴红梅, 胡晋, 杨昱, 张明周, 李力, 徐智. 肺超声可视化支气管肺泡灌洗在肺外周病灶诊断中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 466-470.
[5] 贾红红, 杜文静, 喻昊. 基于CiteSpace可视化分析间充质干细胞治疗糖尿病足的研究现状及趋势[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 282-288.
[6] 孟令展, 李虎, 俞鹏, 于燕宾, 曹李, 翟伟, 高远, 邵艳玲, 严锦, 朱震宇. ICG荧光染色在肝癌腹腔镜解剖性肝切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 557-561.
[7] 高旭东, 王小明, 陈江明, 奚士航, 潘璇. 基于三维可视化技术的脾门区脾动脉三维分型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 434-439.
[8] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[9] 马木提江·木尔提扎, 汪永新, 阿西木江·阿西尔, 姜彦文, 秦虎. 多模态三维影像融合技术在颅内功能区病变手术中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 302-307.
[10] 刘俊, 陈超, 罗赤星, 周波, 王少波, 全中平, 张铭. 神经内镜治疗慢性硬膜下血肿的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 54-57.
[11] 宋涯含, 晁洪露, 田华, 窦豆, 赵旻暐. 机器人在骨科应用相关研究的国际现状与趋势分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 59-64.
[12] 孙广卫, 胡昌龙, 邱涛. 不同手术入路下神经内镜治疗老年垂体瘤的效果评估[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 169-174.
[13] 古士锋, 张丽姿, 梁景英, 杜丽丽, 孙雯, 陈敦金. 2011-2021年我国胎盘植入性疾病研究热点:基于CiteSpace可视化分析[J]. 中华产科急救电子杂志, 2023, 12(03): 159-166.
[14] 高子昂, 段天骄, 谭玉勇, 刘德良, 段天英. 消化内镜隧道技术国内外研究现状及发展趋势的可视化分析[J]. 中华胃肠内镜电子杂志, 2023, 10(03): 159-166.
[15] 林淼, 张绍元, 冯明祥, 谭黎杰, 丁建勇. 国内外胸腺瘤研究现状与趋势的文献可视化分析[J]. 中华胸部外科电子杂志, 2023, 10(04): 213-223.
阅读次数
全文


摘要