切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 343 -348. doi: 10.3877/cma.j.issn.2095-123X.2021.06.005

临床研究

后颅窝减压术治疗Chiari畸形I型对颅-颈交界区稳定性的影响
舒磊1, 吕世刚1, 程祖珏1, 肖爵贤1, 黄凯1, 苏晓燕1,()   
  1. 1. 330006 南昌,南昌大学第二附属医院神经外科
  • 收稿日期:2021-10-26 出版日期:2021-12-15
  • 通信作者: 苏晓燕
  • 基金资助:
    江西省青年科学基金(20161BAB215253); 江西省卫健委科技计划项目(202210044)

Effect of posterior fossa decompression on craniovertebral junction stability in the treatment of Chiari type I malformation

Lei Shu1, Shigang Lyu1, Zuyu Cheng1, Juexian Xiao1, Kai Huang1, Xiaoyan Su1,()   

  1. 1. Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
  • Received:2021-10-26 Published:2021-12-15
  • Corresponding author: Xiaoyan Su
引用本文:

舒磊, 吕世刚, 程祖珏, 肖爵贤, 黄凯, 苏晓燕. 后颅窝减压术治疗Chiari畸形I型对颅-颈交界区稳定性的影响[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 343-348.

Lei Shu, Shigang Lyu, Zuyu Cheng, Juexian Xiao, Kai Huang, Xiaoyan Su. Effect of posterior fossa decompression on craniovertebral junction stability in the treatment of Chiari type I malformation[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2021, 11(06): 343-348.

目的

探讨后颅窝减压术治疗Chiari畸形Ⅰ型(CM-Ⅰ)对颅-颈交界区(CVJ)稳定性的影响,分析CM-Ⅰ的最佳治疗方法。

方法

回顾性分析南昌大学第二附属医院神经外科自2015年1月至2020年1月接受后颅窝减压术+枕大池扩大成形术治疗的CM-Ⅰ患者的临床资料,根据CVJ失稳影像诊断参数将患者分为稳定组和失稳组,根据脊髓空洞、改良日本骨科协会及芝加哥Chiari畸形预后量表评分评估手术疗效,并分析失稳的影响因素。

结果

纳入89例患者作为研究对象,随访3~55个月,有4例患者术前无失稳但在术后3~4年出现寰枕关节失稳纳入失稳组,稳定组85例,2组患者临床症状和体征得到明显改善。

结论

后颅窝减压术治疗CM-Ⅰ安全有效,并且对CVJ稳定性无明显影响,是CM-Ⅰ的首选治疗方式。

Objective

To investigate the effect of posterior fossus decompression for Chiari malformation typeⅠ (CM-Ⅰ) on the stability of craniocervical junction, to analyze the best treatment method of CM-Ⅰ.

Methods

The CM-Ⅰ patients who received cranial fossus decompression + enlarged cisternplasty in in the Neurosurgery Department of the Second Affiliated Hospital of Nanchang University from January 2015 to January 2020 were retrospectively collected. According to the imaging diagnostic parameters of craniocervical junction instability, the patients were divided into the stability group and the instability group. The surgical efficacy was evaluated and the influencing factors of instability were analyzed according to the myelomyelia volume, modified Japanese Orthopedic Association and the Chicago Chiari outcome scale.

Results

Of the 89 subjects who were followed up for 3 to 55 months, 4 had no craniocervical junction instability before surgery and had atlanto-occipitocervical joint instability 3 to 4 years after surgery, 85 in the stability group. The clinical symptoms and function of patients in both groups were significantly improved.

Conclusion

Posterior fossa decompression is safe and effective, and has no significant effect on the stability of craniocervical junction. Therefore, it is the preferred treatment for CM-Ⅰ.

图2 典型病例2术前和随访影像学资料
表1 89例CM-Ⅰ患者的基本情况
表2 稳定组患者手术疗效分析
表3 失稳组患者术前及随访指标统计
[1]
Zhang Y, Zhang N, Qiu H, et al. An efficacy analysis of posterior fossa decompression techniques in the treatment of Chiari malformation with associated syringomyelia[J]. J Clin Neurosci, 2011, 18(10): 1346-1349.
[2]
Speer MC, Enterline DS, Mehltretter L, et al. Review article: chiari type I malformation with or without syringomyelia: prevalence and genetics[J]. J Genet Couns, 2003, 12(4): 297-311.
[3]
Goel A. Is atlantoaxial instability the cause of Chiari malformation? Outcome analysis of 65 patients treated by atlantoaxial fixation[J]. J Neurosurg Spine, 2015, 22(2): 116-127.
[4]
Fernández AA, Guerrero AI, Martínez MI, et al. Malformations of the craniocervical junction (Chiari type I and syringomyelia: classification, diagnosis and treatment)[J]. BMC Musculoskelet Disord, 2009, 10 Suppl 1(Suppl 1): S1.
[5]
Godil SS, Parker SL, Zuckerman SL, et al. Accurately measuring outcomes after surgery for adult Chiari I malformation: determining the most valid and responsive instruments[J]. Neurosurgery, 2013, 72(5): 820-827; discussion 827.
[6]
Bapuraj JR, Londy FJ, Delavari N, et al. Cerebrospinal fluid velocity amplitudes within the cerebral aqueduct in healthy children and patients with Chiari I malformation[J]. J Magn Reson Imaging, 2016, 44(2): 463-470.
[7]
Shaffer N, Martin B, Loth F. Cerebrospinal fluid hydrodynamics in type I Chiari malformation[J]. Neurol Res, 2011, 33(3): 247-260.
[8]
Klekamp J. Surgical treatment of Chiari I malformation--analysis of intraoperative findings, complications, and outcome for 371 foramen magnum decompressions[J]. Neurosurgery, 2012, 71(2): 365-380; discussion 380.
[9]
Hinck VC, Hopkins CE. Measurement of the atlanto-dental interval in the adult[J]. Am J Roentgenol Radium Ther Nucl Med, 1960, 84: 945-951.
[10]
Harris JH Jr, Carson GC, Wagner LK. Radiologic diagnosis of traumatic occipitovertebral dissociation: 1. Normal occipitovertebral relationships on lateral radiographs of supine subjects[J]. AJR Am J Roentgenol, 1994, 162(4): 881-886.
[11]
Harris JH Jr, Carson GC, Wagner LK, et al. Radiologic diagnosis of traumatic occipitovertebral dissociation: 2. comparison of three methods of detecting occipitovertebral relationships on lateral radiographs of supine subjects[J]. AJR Am J Roentgenol, 1994, 162(4): 887-892.
[12]
Wang S, Wang C, Passias PG, et al. Interobserver and intraobserver reliability of the cervicomedullary angle in a normal adult population[J]. Eur Spine J, 2009, 18(9): 1349-1354.
[13]
Diaconis JN, Rao KC. CT in head trauma: a review[J]. J Comput Tomogr, 1980, 4(4): 261-270.
[14]
Furtado SV, Reddy K, Hegde AS. Posterior fossa morphometry in symptomatic pediatric and adult Chiari I malformation[J]. J Clin Neurosci, 2009, 16(11): 1449-1154.
[15]
Massimi L, Peppucci E, Peraio S, et al. History of Chiari type I malformation[J]. Neurol Sci, 2011, 32 Suppl 3: S263-S265.
[16]
Milhorat TH, Nishikawa M, Kula RW, et al. Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management[J]. Acta Neurochir (Wien), 2010, 152(7): 1117-1127.
[17]
Tubbs RS, Oakes WJ. Chiari malformation[J]. J Neurosurg, 2007, 106(4 Suppl): 329; author reply 329-330.
[18]
Gardner WJ. Hydrodynamic mechanism of syringomyelia: its relationship to myelocele[J]. J Neurol Neurosurg Psychiatry, 1965, 28(3): 247-259.
[19]
Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold--Chiari malformation[J]. J Neurol Sci, 1981, 50(1): 29-55.
[20]
Levitt MR, Niazi TN, Hopper RA, et al. Resolution of syndromic craniosynostosis-associated Chiari malformation type I without suboccipital decompression after posterior cranial vault release[J]. J Neurosurg Pediatr, 2012, 9(2): 111-115.
[21]
Williams B. Cerebrospinal fluid pressure-gradients in spina bifida cystica, with special reference to the Arnold-Chiari malformation and aqueductal stenosis[J]. Dev Med Child Neurol Suppl, 1975, 17(35): 138-150.
[22]
Goel A. A review of a new clinical entity of 'central atlantoaxial instability’: expanding horizons of craniovertebral junction surgery[J]. Neurospine, 2019, 16(2): 186-194.
[23]
Panjabi MM, Oda T, Crisco JJ 3rd, et al. Experimental study of atlas injuries. I. Biomechanical analysis of their mechanisms and fracture patterns[J]. Spine (Phila Pa 1976), 1991, 16(10 Suppl): S460-S465.
[24]
Vishteh AG, Crawford NR, Melton MS, et al. Stability of the craniovertebral junction after unilateral occipital condyle resection: a biomechanical study[J]. J Neurosurg, 1999, 90(1 Suppl): 91-98.
[25]
Panjabi M, Dvorak J, Crisco JJ 3rd, et al. Effects of alar ligament transection on upper cervical spine rotation[J]. J Orthop Res, 1991, 9(4): 584-593.
[26]
Dickman CA, Crawford NR, Brantley AG, et al. Biomechanical effects of transoral odontoidectomy[J]. Neurosurgery, 1995, 36(6): 1146-1152; discussion 1152-1153.
[27]
Tubbs RS, Hallock JD, Radcliff V, et al. Ligaments of the craniocervical junction[J]. J Neurosurg Spine, 2011, 14(6): 697-709.
[1] 吕学明, 段亦然, 赵振宇, 门学忠, 初晨宇, 王天助, 卢培刚, 袁绍纪. 后颅窝枕下减压术治疗大面积小脑梗死的预后分析[J]. 中华神经创伤外科电子杂志, 2018, 04(06): 363-366.
[2] 苏新文, 闫润民. 后颅窝减压术后脊髓空洞无好转再治疗的进展[J]. 中华临床医师杂志(电子版), 2020, 14(11): 937-940.
阅读次数
全文


摘要