切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 336 -342. doi: 10.3877/cma.j.issn.2095-123X.2021.06.004

临床研究

Boogaard角在颅底凹陷复位手术决策中的临床意义
彭立玮1, 王鹏1, 左威1, 程超1, 杨帆2, 熊东1, 毛紫龙1, 赵磊1, 彭驰3, 张津安1, 张雷1, 李维新1,()   
  1. 1. 710038 西安,第四军医大学唐都医院神经外科
    2. 710038 西安,第四军医大学唐都医院烧伤整形科
    3. 200433 上海,第二军医大学军队卫生统计学教研室
  • 收稿日期:2021-11-07 出版日期:2021-12-15
  • 通信作者: 李维新

Clinical significance of Boogaard angle in surgical decision of basilar invagination reduction

Liwei Peng1, Peng Wang1, Wei Zuo1, Chao Cheng1, Fan Yang2, Dong Xiong1, Zilong Mao1, Lei Zhao1, Chi Peng3, Jin’an Zhang1, Lei Zhang1, Weixin Li1,()   

  1. 1. Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
    2. Department of Plastic Surgery and Burns, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
    3. Department of Health Statistics, Second Military Medical University, Shanghai 200433, China
  • Received:2021-11-07 Published:2021-12-15
  • Corresponding author: Weixin Li
引用本文:

彭立玮, 王鹏, 左威, 程超, 杨帆, 熊东, 毛紫龙, 赵磊, 彭驰, 张津安, 张雷, 李维新. Boogaard角在颅底凹陷复位手术决策中的临床意义[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 336-342.

Liwei Peng, Peng Wang, Wei Zuo, Chao Cheng, Fan Yang, Dong Xiong, Zilong Mao, Lei Zhao, Chi Peng, Jin’an Zhang, Lei Zhang, Weixin Li. Clinical significance of Boogaard angle in surgical decision of basilar invagination reduction[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2021, 11(06): 336-342.

目的

探究术后Boogaard角与患者报告的日本矫形外科学会(PRO-JOA)评分改善率之间的定量关系以指导颅底凹陷复位手术。

方法

回顾性分析第四军医大学唐都医院神经外科自2015年8月至2020年8月收治的颅颈交界区畸形患者的临床资料,测量包括Boogaard角在内的23个颅颈交界区影像学矢状位参数,并记录PRO-JOA评分以评估临床结局。统计颅底凹陷患者的PRO-JOA改善率(ΔPRO-JOA)和术后影像学参数。

结果

研究共纳入94例颅底凹陷患者。Boogaard角与ΔPRO-JOA的较好结局相关。在未调整模型中,Boogaard角与ΔPRO-JOA呈正相关(OR=1.04,95%CI:1.00~1.08);微调整模型(调整年龄、性别)中,结果未发生明显变化(OR=1.04,95%CI:1.01~1.08)。非线性模型中,Boogaard角<160.8°时,Boogaard角与ΔPRO-JOA呈正相关(校正OR=1.22,95%CI:1.03~1.44)。

结论

Boogaard角矫正将影响颅底凹陷患者ΔPRO-JOA,可作为颅底凹陷复位手术是否联合后颅窝减压的定量参考。

Objective

To investigate the quantitative relationship between postoperative Boogaard angle and the improvement rate of patient-reported Japanese Orthopaedic Association(PRO-JOA) score to guide basilar invagination reduction surgery.

Methods

The patients diagnosed with craniocervical junction malformation in the Neurosurgery Department of Tangdu Hospital, Fourth Military Medical University from August 2015 to August 2020 were retrospectively analyzed. Twenty-three radiographic sagittal parameters of craniocervical junction including Boogaard angle were measured, and PRO-JOA score were recorded to assess clinical outcomes. PRO-JOA improvement rate(ΔPRO-JOA) and postoperative radiographic parameters including Boogaard angle in patients with basilar invagination were measured.

Results

A total of 94 patients with basilar invagination were included in the study. Boogaard angle was associated with better outcome in ΔPRO-JOA. Boogaard angle was positively associated with ΔPRO-JOA in the unadjusted model(OR=1.04, 95%CI: 1.00-1.08). In the micro adjustment model (adjusted for age and gender), the results did not change significantly (OR=1.04, 95%CI: 1.01-1.08). In the nonlinear model, there was a positive correlation with ΔPRO-JOA with Boogaard angle<160.8° (correction OR=1.22, 95%CI: 1.03-1.44).

Conclusion

Boogaard angle correction will affect ΔPRO-JOA in patients with basilar invagination and can be used as a quantitative reference for whether basilar invagination reduction surgery is combined with posterior fossa decompression.

图1 颅颈交界区矢状位参数测量示意图a:Wackenheim线;b:水平线;c:McRae线;d:寰椎前结节和后结节连线;e:枢椎下终板切线;f:隆椎下终板切线;g:水平线;h:水平线;i:斜坡前缘切线;j:齿突腹侧缘切线;k:Chamberlain’s线;l:齿突背侧缘切线;m:T1上终板中点和齿状尖的连线;n:通过齿状突尖的重垂线;o:T1上终板切线垂线;p:鼻根点和鞍背尖端连线;q:McGregor线;r:硬腭后缘和隆椎椎体中心连线;s:隆椎下终板中点和鞍背尖端连线;t:隆椎下终板切线;u:水平线;v:鞍背尖端和McRae线中点连线;w:McRae线垂直平分线
图2 研究对象纳入排除流程图
表1 94例纳入患者人口学特征统计
表2 ΔPRO-JOA独立预测因素的未调整单因素分析
项目 数据 OR(95%CI) P
年龄[岁,M(Q25,Q75)] 39.00(29.0,49.0) 0.95(0.91~0.98) 0.005
后组颅神经症状[例(%)]      
  87(92.55) 1  
  7(7.45) 2.42(0.28~21.13) 0.424
麻木症状[例(%)]      
  21(22.58) 1  
  72(77.42) 0.53(0.16~1.77) 0.306
头晕症状[例(%)]      
  52(55.91) 1  
  41(44.09) 1.38(0.55~3.47) 0.497
CLV[mm,M(Q25,Q75)] 8.10(5.85,11.00) 1.00(0.90~1.11) 0.978
ADI[mm,M(Q25,Q75)] 1.90(1.50,2.70) 1.00(0.73~1.36) 0.978
C2-7 SVA[mm,M(Q25,Q75)] 13.45(7.07,20.15) 1.01(0.96~1.06) 0.749
C0-1角[M(Q25,Q75)] 7.75°(4.23°,13.55°) 1.02(0.94~1.10) 0.658
C1-2角(Mean±SD) 24.01°±11.39° 1.02(0.98~1.07) 0.276
C0-2角[M(Q25,Q75)] 31.00°(24.10°,40.85°) 1.02(0.98~1.06) 0.298
C2-7角[M(Q25,Q75)] 18.95°(10.05°,25.70°) 1.01(0.97~1.04) 0.713
C2 S[M(Q25,Q75)] 7.80°(3.95°,13.30°) 1.00(0.94~1.07) 0.996
C7 S(Mean±SD) 22.64°±8.50° 1.03(0.97~1.09) 0.360
CraT[M(Q25,Q75)] 4.75°(2.30°,9.20°) 0.95(0.86~1.06) 0.371
CerT[M(Q25,Q75)] 18.30°(12.25°,22.05°) 0.99(0.94~1.05) 0.829
AT(Mean±SD) 82.87°±11.64° 0.98(0.94~1.02) 0.267
CCT[M(Q25,Q75)] 106.55°(93.00°,115.25°) 0.99(0.97~1.01) 0.352
CXA(Mean±SD) 131.20°±14.47° 0.96(0.92~0.99) 0.016
CS(Mean±SD) 52.02°±14.61° 0.96(0.93~1.00) 0.029
CMA(Mean±SD) 140.40°±13.37° 1.02(0.98~1.06) 0.425
BA(Mean±SD) 134.58°±9.74° 1.07(0.99~1.14) 0.074
Boogaard角[M(Q25,Q75)] 158.10°(148.00°,165.40°) 1.04(1.00~1.08) 0.026
HNFA[M(Q25,Q75)] 88.20°(79.60°,94.05°) 0.94(0.88~1.00) 0.035
OS(Mean±SD) 28.79°±10.37° 0.99(0.95~1.04) 0.800
CCA(Mean±SD) 57.50°±6.61° 1.02(0.95~1.10) 0.570
SCA(Mean±SD) 77.87°±10.22° 1.01(0.96~1.07) 0.579
CraI(Mean±SD) 68.94°±8.53° 1.04(0.98~1.10) 0.220
表3 Boogaard角与ΔPRO-JOA的多模型比较
图3 ΔPRO-JOA与Boogaard角之间的相关性
表4 分段线性回归分析Boogard角对ΔPRO-JOA的阈值效应和饱和效应
表5 关于Boogaard角的文献回顾
[1]
Menezes AH. Craniocervical developmental anatomy and its implications[J]. Childs Nerv Syst, 2008, 24(10): 1109-1122.
[2]
中华医学会神经外科学分会,中国医师协会神经外科医师分会. 中国颅颈交界区畸形诊疗专家共识[J]. 中华神经外科杂志, 2016, 32(7): 659-665.
[3]
Goel A. Treatment of basilar invagination by atlantoaxial joint distraction and direct lateral mass fixation[J]. J Neurosurg Spine, 2004, 1(3): 281-286.
[4]
Chen Z, Duan W, Chou D, et al. A safe and effective posterior intra-articular distraction technique to treat congenital atlantoaxial dislocation associated with basilar invagination: case series and technical nuances[J]. Oper Neurosurg (Hagerstown), 2021, 20(4): 334-342.
[5]
Vega A, Quintana F, Berciano J. Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study[J]. J Neurol Sci, 1990, 99(2-3): 137-145.
[6]
Passias PG, Soroceanu A, Smith J, et al. Postoperative cervical deformity in 215 thoracolumbar patients with adult spinal deformity: prevalence, risk factors, and impact on patient-reported outcome and satisfaction at 2-year follow-up[J]. Spine (Phila Pa 1976), 2015, 40(5): 283-291.
[7]
Obeid I, Boniello A, Boissiere L, et al. Cervical spine alignment following lumbar pedicle subtraction osteotomy for sagittal imbalance[J]. Eur Spine J, 2015, 24(6): 1191-1198.
[8]
Ma L, Guo L, Li X, et al. Clivopalate angle: a new diagnostic method for basilar invagination at magnetic resonance imaging[J]. Eur Radiol, 2019, 29(7): 3450-3457.
[9]
Protopsaltis TS, Lafage R, Vira S, et al. Novel angular measures of cervical deformity account for upper cervical compensation and sagittal alignment[J]. Clin Spine Surg, 2017, 30(7): E959-E967.
[10]
Le Huec JC, Demezon H, Aunoble S. Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers[J]. Eur Spine J, 2015, 24(1): 63-71.
[11]
Baysal B, Eser MB, Sorkun M. Radiological approach to basilar invagination type B: reliability and accuracy[J]. J Neuroradiol, 2020, online ahead of print.
[12]
Nascimento JJC, Carreiro NMF, Oliveira GT, et al. Relationship between basilar invagination and brachycephaly in northeastern Brazil[J]. Eur J Radiol, 2018, 104: 58-63.
[13]
Nascimento JJC, Neto EJS, Mello-Junior CF, et al. Diagnostic accuracy of classical radiological measurements for basilar invagination of type B at MRI[J]. Eur Spine J, 2019, 28(2): 345-352.
[14]
Alkoç OA, Songur A, Eser O, et al. Stereological and morphometric analysis of MRI Chiari malformation type-1[J]. J Korean Neurosurg Soc, 2015, 58(5): 454-461.
[15]
Karagöz F, Izgi N, Kapíjcíjoğlu Sencer S. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population[J]. Acta Neurochir (Wien), 2002,144(2): 165-171; discussion 171.
[16]
Dufton JA, Habeeb SY, Heran MK, et al. Posterior fossa measurements in patients with and without Chiari I malformation[J]. Can J Neurol Sci, 2011, 38(3): 452-455.
[17]
Ferreira JA, Botelho RV. The odontoid process invagination in normal subjects, Chiari malformation and basilar invagination patients: pathophysiologic correlations with angular craniometry[J]. Surg Neurol Int, 2015, 6: 118.
[18]
Gupta PP, Dhok AM, Shaikh ST, et al. Computed tomography evaluation of craniovertebral junction in asymptomatic central rural indian population[J]. J Neurosci Rural Pract, 2020, 11(3): 442-447.
[19]
Greenlee J, Garell PC, Stence N, et al. Comprehensive approach to Chiari malformation in pediatric patients[J]. Neurosurg Focus, 1999, 6(6): E6.
[20]
Botelho RV, Ferreira ED. Angular craniometry in craniocervical junction malformation[J]. Neurosurg Rev, 2013, 36(4): 603-610; discussion 610.
[21]
Alkoç OA, Songur A, Eser O, et al. Stereological and morphometric analysis of MRI Chiari malformation type-1[J]. J Korean Neurosurg Soc, 2015, 58(5): 454-461.
[1] 吕学明, 段亦然, 赵振宇, 门学忠, 初晨宇, 王天助, 卢培刚, 袁绍纪. 后颅窝枕下减压术治疗大面积小脑梗死的预后分析[J]. 中华神经创伤外科电子杂志, 2018, 04(06): 363-366.
[2] 陈星宇, 谢嵘. 颅底凹陷的影像学进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 43-48.
[3] 舒磊, 吕世刚, 程祖珏, 肖爵贤, 黄凯, 苏晓燕. 后颅窝减压术治疗Chiari畸形I型对颅-颈交界区稳定性的影响[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(06): 343-348.
[4] 苏新文, 闫润民. 后颅窝减压术后脊髓空洞无好转再治疗的进展[J]. 中华临床医师杂志(电子版), 2020, 14(11): 937-940.
[5] 唐冲, 刘正, 吴四军. 汉族老年人群脊柱-骨盆X线片矢状位参数特点及序列拟合关系分析[J]. 中华临床医师杂志(电子版), 2019, 13(08): 583-588.
阅读次数
全文


摘要