切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 120 -123. doi: 10.3877/cma.j.issn.2095-123X.2022.02.011

综述

基于深度学习神经网络Mask R-CNN脑肿瘤的研究进展
王運達1, 孟欣2, 王浩聪3, 刘文卿2, 辛涛1,()   
  1. 1. 250014 济南,山东第一医科大学第一附属医院(山东省千佛山医院)神经外科
    2. 250012 济南,山东大学齐鲁医学院
    3. 250117 济南,山东第一医科大学(山东省医学科学院)
  • 收稿日期:2022-02-19 出版日期:2022-04-15
  • 通信作者: 辛涛
  • 基金资助:
    国家自然科学基金(82173140)

Advances in brain tumor research based on deep learning neural network Mask R-CNN

Yunda Wang1, Xin Meng2, Haocong Wang3, Wenqing Liu2, Tao Xin1,()   

  1. 1. Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan 250014, China
    2. Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
    3. Shandong First Medical University&Shandong Academy of Medical Sciences, Ji'nan 250117, China
  • Received:2022-02-19 Published:2022-04-15
  • Corresponding author: Tao Xin
引用本文:

王運達, 孟欣, 王浩聪, 刘文卿, 辛涛. 基于深度学习神经网络Mask R-CNN脑肿瘤的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 120-123.

Yunda Wang, Xin Meng, Haocong Wang, Wenqing Liu, Tao Xin. Advances in brain tumor research based on deep learning neural network Mask R-CNN[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2022, 12(02): 120-123.

随着人工智能的快速发展,深度学习已被广泛应用于医学领域。近年来,基于深度学习神经网络Mask R-CNN已在其他领域展现了处理自然图像集的高效性,其特点在于对物体目标检测的同时,还能兼顾处理语义分割问题。虽然该算法尚未广泛的应用于医学领域,但是已有文献对其在脑肿瘤图像识别方面进行了初步的探索。本文就Mask R-CNN的优势及其在脑肿瘤中的应用、研究热点及面临问题等方面展开综述,为脑肿瘤精准个体化诊疗的未来发展提供一个新方向。

With the rapid development of artificial intelligence, deep learning has been widely used in the medical field. In recent years, deep learning based neural network Mask R-CNN has proved its high efficiency in processing natural image sets in other fields. Its feature is that it could not only detect object but also deal with semantic segmentation. Although the algorithm has not been widely applied in the medical field, preliminary exploration has been made in the image recognition of brain tumors in the literature. This paper reviews the advantages of Mask R-CNN, its application in brain tumors, research hotspots and problems, so as to provide a new direction for the future development of precise personalized diagnosis and treatment of brain tumors.

[19]
赵旭,王宏.基于Mask RCNN改进的全自动脑肿瘤分割[J].首都师范大学学报(自然科学版), 2021,42(6): 1-7.
[20]
叶德湫,许淑惠,黄永础,等.桥小脑角区肿瘤的MRI诊断价值[J].中外医学研究, 2017, 15(1): 50-51.
[21]
陈琪,李国强,李惊涛. MRI对颅内脑膜瘤的诊断价值研究[J].中国CT和MRI杂志, 2016, 14(4): 23-26.
[22]
刘颖,陈静聪,胡小洋,等.基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J].波谱学杂志, 2021, 38(1): 58-68.
[23]
刘颖,郭伊云,陈静聪,等.基于Faster-RCNN和Level-Set的桥小脑角区肿瘤自动精准分割[J].波谱学杂志, 2021, 38(3): 381-391.
[24]
刘大鹏,程君,黄唯,等.增强的基于灰度共生矩阵的脑肿瘤MRI图像分类[J].中国医学物理学杂志, 2015, 32(6): 772-776.
[25]
Masood M, Nazir T, Nawaz M, et al. A novel deep learning method for recognition and classification of brain tumors from MRI images[J]. Diagnostics (Basel), 2021, 11(5): 744.
[26]
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 2261-2269.
[27]
Lee MKI, Rabindranath M, Faust K, et al. Compound computer vision workflow for efficient and automated immunohistochemical analysis of whole slide images[J]. J Clin Pathol, 2022, online ahead of print.
[28]
Yoon HG, Cheon W, Jeong SW, et al. Multi-parametric deep learning model for prediction of overall survival after postoperative concurrent chemoradiotherapy in glioblastoma patients[J]. Cancers (Basel), 2020, 12(8): 2284.
[1]
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks[C]//Advances in neural information processing systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. La Jolla, CA: Neural Information Processing Systems, 2012: 1097-1105.
[2]
He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25(1): 30-36.
[3]
He K, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(2): 386-397.
[4]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 580-587.
[5]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
[6]
刘阳,谢永强,李忠博,等.基于深度学习的目标检测算法研究进展[J].通信技术, 2021, 54(9): 2063-2073.
[7]
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651.
[8]
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention, Berlin: Springer, 2015: 234-241.
[9]
Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Fourth International Conference on 3D Vision, Stanford, 2016: 565-571.
[10]
欧攀,路奎,张正,等.基于Mask RCNN的目标识别与空间定位[J].计算机测量与控制, 2019, 27(6): 172-176.
[11]
张博,周军,王芳,等.基于Mask R-CNN的触摸屏玻璃疵病检测与识别[J].软件导刊, 2019, 18(2): 64-67, 71.
[12]
Thiruppathiraj S, Kumar U, Buchke S. Automatic pothole classification and segmentation using android smartphone sensors and camera images with machine learning techniques[C]//2020 IEEE Region 10 Conference (TENCO), Osaka, 2020: 1386-1391.
[13]
Resente G, Gillert A, Trouillier M, et al. Mask, train, repeat! Artificial intelligence for quantitative wood anatomy[J]. Front Plant Sci, 2021, 12: 767400.
[14]
黄毅鹏,胡冀苏,钱旭升,等. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J].浙江大学学报(工学版), 2021, 55(1): 203-212.
[15]
Ahammed Muneer KV, Rajendran VR, K PJ. Glioma tumor grade identification using artificial intelligent techniques[J]. J Med Syst, 2019, 43(5): 113.
[16]
Zhuge Y, Ning H, Mathen P, et al. Automated glioma grading on conventional MRI images using deep convolutional neural networks[J]. Med Phys, 2020, 47(7): 3044-3053.
[17]
Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network[J]. Neuro Oncol, 2019, 21(9): 1197-1209.
[18]
Jeong J, Lei Y, Kahn S, et al. Brain tumor segmentation using 3D Mask R-CNN for dynamic susceptibility contrast enhanced perfusion imaging[J]. Phys Med Biol, 2020, 65(18): 185009.
[1] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[4] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[5] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[6] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[7] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[8] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[9] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[10] 田亚, 吴美龙, 冯晓彬. 人工智能在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 258-262.
[11] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[12] 蔡紫妍, 段宣初, 杨翔. 深度学习算法在青光眼筛查与诊断中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 188-192.
[13] 吕东, 朱盛, 胡秋平, 邹松, 黄文强, 唐全进, 黄海. 基于增强CT与增强MRI融合的3D打印导板辅助脑肿瘤穿刺活检一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 251-254.
[14] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要