切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 120 -123. doi: 10.3877/cma.j.issn.2095-123X.2022.02.011

综述

基于深度学习神经网络Mask R-CNN脑肿瘤的研究进展
王運達1, 孟欣2, 王浩聪3, 刘文卿2, 辛涛1,()   
  1. 1. 250014 济南,山东第一医科大学第一附属医院(山东省千佛山医院)神经外科
    2. 250012 济南,山东大学齐鲁医学院
    3. 250117 济南,山东第一医科大学(山东省医学科学院)
  • 收稿日期:2022-02-19 出版日期:2022-04-15
  • 通信作者: 辛涛
  • 基金资助:
    国家自然科学基金(82173140)

Advances in brain tumor research based on deep learning neural network Mask R-CNN

Yunda Wang1, Xin Meng2, Haocong Wang3, Wenqing Liu2, Tao Xin1,()   

  1. 1. Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan 250014, China
    2. Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
    3. Shandong First Medical University&Shandong Academy of Medical Sciences, Ji'nan 250117, China
  • Received:2022-02-19 Published:2022-04-15
  • Corresponding author: Tao Xin
引用本文:

王運達, 孟欣, 王浩聪, 刘文卿, 辛涛. 基于深度学习神经网络Mask R-CNN脑肿瘤的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 120-123.

Yunda Wang, Xin Meng, Haocong Wang, Wenqing Liu, Tao Xin. Advances in brain tumor research based on deep learning neural network Mask R-CNN[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2022, 12(02): 120-123.

随着人工智能的快速发展,深度学习已被广泛应用于医学领域。近年来,基于深度学习神经网络Mask R-CNN已在其他领域展现了处理自然图像集的高效性,其特点在于对物体目标检测的同时,还能兼顾处理语义分割问题。虽然该算法尚未广泛的应用于医学领域,但是已有文献对其在脑肿瘤图像识别方面进行了初步的探索。本文就Mask R-CNN的优势及其在脑肿瘤中的应用、研究热点及面临问题等方面展开综述,为脑肿瘤精准个体化诊疗的未来发展提供一个新方向。

With the rapid development of artificial intelligence, deep learning has been widely used in the medical field. In recent years, deep learning based neural network Mask R-CNN has proved its high efficiency in processing natural image sets in other fields. Its feature is that it could not only detect object but also deal with semantic segmentation. Although the algorithm has not been widely applied in the medical field, preliminary exploration has been made in the image recognition of brain tumors in the literature. This paper reviews the advantages of Mask R-CNN, its application in brain tumors, research hotspots and problems, so as to provide a new direction for the future development of precise personalized diagnosis and treatment of brain tumors.

[19]
赵旭,王宏.基于Mask RCNN改进的全自动脑肿瘤分割[J].首都师范大学学报(自然科学版), 2021,42(6): 1-7.
[20]
叶德湫,许淑惠,黄永础,等.桥小脑角区肿瘤的MRI诊断价值[J].中外医学研究, 2017, 15(1): 50-51.
[21]
陈琪,李国强,李惊涛. MRI对颅内脑膜瘤的诊断价值研究[J].中国CT和MRI杂志, 2016, 14(4): 23-26.
[22]
刘颖,陈静聪,胡小洋,等.基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J].波谱学杂志, 2021, 38(1): 58-68.
[23]
刘颖,郭伊云,陈静聪,等.基于Faster-RCNN和Level-Set的桥小脑角区肿瘤自动精准分割[J].波谱学杂志, 2021, 38(3): 381-391.
[24]
刘大鹏,程君,黄唯,等.增强的基于灰度共生矩阵的脑肿瘤MRI图像分类[J].中国医学物理学杂志, 2015, 32(6): 772-776.
[25]
Masood M, Nazir T, Nawaz M, et al. A novel deep learning method for recognition and classification of brain tumors from MRI images[J]. Diagnostics (Basel), 2021, 11(5): 744.
[26]
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 2261-2269.
[27]
Lee MKI, Rabindranath M, Faust K, et al. Compound computer vision workflow for efficient and automated immunohistochemical analysis of whole slide images[J]. J Clin Pathol, 2022, online ahead of print.
[28]
Yoon HG, Cheon W, Jeong SW, et al. Multi-parametric deep learning model for prediction of overall survival after postoperative concurrent chemoradiotherapy in glioblastoma patients[J]. Cancers (Basel), 2020, 12(8): 2284.
[1]
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks[C]//Advances in neural information processing systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. La Jolla, CA: Neural Information Processing Systems, 2012: 1097-1105.
[2]
He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25(1): 30-36.
[3]
He K, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(2): 386-397.
[4]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 580-587.
[5]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
[6]
刘阳,谢永强,李忠博,等.基于深度学习的目标检测算法研究进展[J].通信技术, 2021, 54(9): 2063-2073.
[7]
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651.
[8]
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention, Berlin: Springer, 2015: 234-241.
[9]
Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Fourth International Conference on 3D Vision, Stanford, 2016: 565-571.
[10]
欧攀,路奎,张正,等.基于Mask RCNN的目标识别与空间定位[J].计算机测量与控制, 2019, 27(6): 172-176.
[11]
张博,周军,王芳,等.基于Mask R-CNN的触摸屏玻璃疵病检测与识别[J].软件导刊, 2019, 18(2): 64-67, 71.
[12]
Thiruppathiraj S, Kumar U, Buchke S. Automatic pothole classification and segmentation using android smartphone sensors and camera images with machine learning techniques[C]//2020 IEEE Region 10 Conference (TENCO), Osaka, 2020: 1386-1391.
[13]
Resente G, Gillert A, Trouillier M, et al. Mask, train, repeat! Artificial intelligence for quantitative wood anatomy[J]. Front Plant Sci, 2021, 12: 767400.
[14]
黄毅鹏,胡冀苏,钱旭升,等. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J].浙江大学学报(工学版), 2021, 55(1): 203-212.
[15]
Ahammed Muneer KV, Rajendran VR, K PJ. Glioma tumor grade identification using artificial intelligent techniques[J]. J Med Syst, 2019, 43(5): 113.
[16]
Zhuge Y, Ning H, Mathen P, et al. Automated glioma grading on conventional MRI images using deep convolutional neural networks[J]. Med Phys, 2020, 47(7): 3044-3053.
[17]
Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network[J]. Neuro Oncol, 2019, 21(9): 1197-1209.
[18]
Jeong J, Lei Y, Kahn S, et al. Brain tumor segmentation using 3D Mask R-CNN for dynamic susceptibility contrast enhanced perfusion imaging[J]. Phys Med Biol, 2020, 65(18): 185009.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[3] 赫兰, 杨泽堃, 张颖, 王玉东, 陈伟导, 王一同, 申锷. 双输入BCNN-ResNet模型对超声颈动脉斑块稳定性的分类诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(02): 137-142.
[4] 成汉林, 史中青, 戚占如, 王小贤, 曾子炀, 单淳劼, 钱隼南, 罗守华, 姚静. 基于深度学习的超声心动图动态图像切面识别研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(02): 128-136.
[5] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[6] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[7] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[8] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[9] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[10] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[11] 王妍, 李征, 卓奇峰, 周陈杰, 吉顺荣, 徐晓武, 陈洁, 虞先濬. 微小无功能性胰腺神经内分泌瘤外科治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 607-614.
[12] 陈健, 周静洁, 夏开建, 王甘红, 刘罗杰, 徐晓丹. 基于卷积神经网络实现结直肠息肉的实时检测与自动NICE分型(附视频)[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 217-228.
[13] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 林一鑫, 董晶, 贾建文, 黄菊梅, 武军元, 王双坤, 柳云鹏, 汪阳. 基于人工智能分析颈内动脉颅外段迂曲特征及对称性的应用性评价[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(03): 202-209.
阅读次数
全文


摘要